Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biotechnology Progress

Sustained growth of explants from Mediterranean sponge Crambe crambe cultured in vitro with enriched RPMI 1640.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
F Garcia Camacho
T Chileh
M C Cerón García
A Sanchez Mirón
E H Belarbi
A Contreras Gómez
E Molina Grima

Nøgleord

Abstrakt

Marine sponges are potential sources of many unique metabolites, including cytotoxic and anticancer compounds. Natural sponge populations are insufficient or inaccessible for producing commercial quantities of metabolites of interest. It is commonly accepted that tissue (fragments, explants, and primmorphs) and in vitro cell cultivation show great potential. However, there is little knowledge of the nutritional requirements of marine sponges to carry out efficient and sustained in vitro culture and progress has been slow. In marine invertebrate fila many unsuccessful attempts have been made with in vitro cultures using typical commercial animal cell media based on sources of dissolved organic carbon (DOC) (e.g., DMEM, RPMI, M199, L-15, etc.). One of the reasons for this failure is the use of hardly identifiable growth promoters, based on terrestrial animal sera. An alternative is the use of extracts from marine animals, since they may contain nutrients necessary for growth. In this work we have cultivated in vitro explants of the encrusting marine sponge Crambe crambe. It is one of the most abundant sponges on the Mediterranean coastline and also possesses an array of potentially active metabolites (crambines and crambescidins). Initially a new approach was developed in order to show consumption of DOC by explants. Thus, different initial DOC concentrations (300, 400, 700 and 1200 mg DOC L(-1)) were assayed. Consumption was evident in all four assays and was more marked in the first 6 h. The DOC assimilation data were adjusted to an empirical model widely used for uptake kinetics of organic dissolved compounds in marine invertebrates. Second, a protocol was established to cultivate explants in vitro. Different medium formulations based on RPMI 1640 commercial medium enriched with amino acids and inorganic salts to emulate seawater salinity were assayed. The enrichment of this medium with an Octopus aqueous extract in the proportions of 10% and 20% (v/v) resulted in an evident sustained long-term growth of C. crambe explants. This growth enhancement produced high metabolic activity in the explants, as is confirmed by the high ammonium and lactate content in the medium a few days after its renewal and by the consumption of glucose. The lactate accumulation increased with the size and age of explants. Prior to these experiments, we successfully developed a robust new alternative method, based on digital image treatment, for accurate determination of the explant apparent volume as growth measure.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge