Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Canadian Journal of Physiology and Pharmacology 1992-Feb

Sympathoadrenal system in neuroendocrine control of glucose: mechanisms involved in the liver, pancreas, and adrenal gland under hemorrhagic and hypoglycemic stress.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
N Yamaguchi

Nøgleord

Abstrakt

Glucose homeostasis is maintained by complex neuroendocrine control mechanisms, involving three peripheral organs: the liver, pancreas, and adrenal gland, all of which are under control of the autonomic nervous system. During the past decade, abundant results from various studies on neuroendocrine control of glucose have been accumulated. The principal objective of this review is to provide overviews of basic adrenergic mechanisms closely related to glucose control in the three peripheral organs, and then to discuss the integrated glucoregulatory mechanisms in hemorrhage-induced hypotension and insulin-induced hypoglycemia with special reference to sympathoadrenal control mechanisms. The liver is richly innervated by sympathetic and parasympathetic nerves. The functional implication in glucoregulation of sympathetic nerves has been well-documented, while that of parasympathetic nerves remains less understood. More recently, hepatic glucoreceptors have been postulated to be coupled with capsaicin-sensitive afferent nerves, conveying sensory signals of blood glucose concentration to the central nervous system. The pancreas is also richly supplied by the autonomic nervous system. Besides the well documented adrenergic and cholinergic mechanisms, the potential implication of peptidergic neurotransmission by neuropeptide Y and neuromodulation by galanin has recently been postulated in the endocrine secretory function. Presynaptic interactions of these putative peptidergic neurotransmitters with the classic transmitters, noradrenaline and acetylcholine, in the pancreas remain to be clarified. It may be of particular interest that it was vagus nerve stimulation that caused a dominant release of neuropeptide Y over that caused by sympathetic nerve stimulation in the pig pancreas. The adrenal medulla receives its main nerve supply from the greater and lesser splanchnic nerves. Adrenal medullary catecholamine secretion appears to be regulated by three distinct local mechanisms: adrenoceptor-mediated, dihydropyridine-sensitive Ca2+ channel-mediated, and capsaicin-sensitive sensory nerve-mediated mechanisms. In response to hemorrhagic hypotension and insulin-induced hypoglycemia, the sympathoadrenal system is activated resulting in increases of adrenal catecholamine and pancreatic glucagon secretions, both of which are significantly implicated in glucoregulatory mechanisms. An increase in sympathetic nerve activity occurs in the liver during hemorrhagic hypotension and is also likely to occur in the pancreas in response to insulin-induced hypoglycemia. The functional implication of hepatic and central glucoreceptors has been suggested in the increased secretion of glucose counterregulatory hormones, particularly catecholamines and glucagon.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge