Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Research 2018-Nov

The effects of atmospheric hydrogen sulfide on peripheral blood lymphocytes of chickens: Perspectives on inflammation, oxidative stress and energy metabolism.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Qianru Chi
Xin Chi
Xueyuan Hu
Shuang Wang
Hongfu Zhang
Shu Li

Nøgleord

Abstrakt

Excessive hydrogen sulfide (H2S) affects poultry health. Exposure to air pollution induces inflammation, oxidative stress, energy metabolism dysfunction and adverse health effects. However, few detailed studies have been conducted on the molecular mechanisms of H2S-induced injury in poultry. To understand how H2S drives its adverse effects on chickens, twenty-four 14-day-old chickens were randomly divided into two groups. The chickens in the control group were raised in a separate chamber without H2S, and the chickens in the treatment group were exposed to 30 ppm H2S. After 14 days of exposure, peripheral blood samples were taken and the lymphocytes were extracted to detect inflammation, oxidative stress and energy metabolism in broilers. Overall, an increase in the inflammatory response was detected in the peripheral blood lymphocytes following H2S exposure compared to the control group, and the expression levels of the heat shock proteins (HSPs) and the transcription factors nuclear factor κB (NF-κB), cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were up-regulated in the H2S group, which further suggested that H2S induced an inflammatory response via the NF-κB pathway. Because of the activation of NF-κB, which is a major regulator of oxidative stress, we also observed that reactive oxygen species (ROS) production was elevated under H2S exposure. In addition, we presumed that energy metabolism might be damaged due to the increased ROS production, and we found that H2S down-regulated the expression levels of energy metabolism-related genes, which indicated the occurrence of energy metabolism dysfunction. Altogether, this study suggests that exposure to excessive atmospheric H2S induces an inflammatory response, oxidative stress and energy metabolism dysfunction, providing a reference for comparative medicine.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge