Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Advances in Experimental Medicine and Biology 2013

The mechanism of taurine protection against endoplasmic reticulum stress in an animal stroke model of cerebral artery occlusion and stroke-related conditions in primary neuronal cell culture.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Payam Mohammad Gharibani
Jigar Modi
Chunliu Pan
Janet Menzie
Zhiyuan Ma
Po-Chih Chen
Rui Tao
Howard Prentice
Jang-Yen Wu

Nøgleord

Abstrakt

Taurine is an inhibitory neurotransmitter and is one of the most abundant amino acids present in the mammalian nervous system. Taurine has been shown to provide protection against neurological diseases, such as Huntington's disease, Alzheimer's disease, and stroke. Ischemic stroke is one of the leading causes of death and disability in the world. It is generally believed that ischemia-induced brain injury is largely due to excessive release of glutamate resulting in excitotoxicity and cell death. Despite extensive research, there are still no effective interventions for stroke. Recently, we have shown that taurine can provide effective protection against endoplasmic reticulum (ER) stress induced by excitotoxicity or oxidative stress in PC12 cell line or primary neuronal cell cultures. In this study, we employed hypoxia/reoxygenation conditions for primary cortical neuronal cell cultures as an in vitro model of stroke as well as the in vivo model of rat focal middle cerebral artery occlusion (MCAO). Our data showed that when primary neuronal cultures were first subjected to hypoxic conditions (0.3%, 24 h) followed by reoxygenation (21%, 24-48 h), the cell viability was greatly reduced. In the animal model of stroke (MCAO), we found that 2 h ischemia followed by 4 days reperfusion resulted in an infarct of 47.42 ± 9.86% in sections 6 mm from the frontal pole. Using taurine greatly increased cell viability in primary neuronal cell culture and decreased the infarct area of sections at 6 mm to 26.76 ± 6.91% in the MCAO model. Furthermore, levels of the ER stress protein markers GRP78, caspase-12, CHOP, and p-IRE-1 which were markedly increased in both the in vitro and in vivo models significantly declined after taurine administration, suggesting that taurine may exert neuroprotection functions in both models. Moreover, taurine could downregulate the ratio of cleaved ATF6 and full-length ATF6 in both models. In the animal model of stroke, taurine induced an upregulation of the Bcl-2/Bax ratio and downregulation of caspase-3 protein activity indicating that it attenuates apoptosis in the core of the ischemic infarct. Our results show not only taurine elicits neuroprotection through the activation of the ATF6 and the IRE1 pathways, but also it can reduce apoptosis in these models.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge