Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Proteomics 2018-Nov

Toward characterizing germination and early growth in the non-orthodox forest tree species Quercus ilex through complementary gel and gel-free proteomic analysis of embryo and seedlings.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
María Cristina Romero-Rodríguez
Jesús V Jorrín-Novo
María Angeles Castillejo

Nøgleord

Abstrakt

By using two complementary proteomics, gel-based and gel-free (shotgun) approaches, the protein profiles of the non-orthodox forest tree species Quercus ilex seeds during germination and early seedling growth have been compared. Proteins were extracted from embryo axis, radicle and shoot tissues at different developmental stages. Proteins were subjected to one- and two-dimensional gel electrophoresis. A multivariate analysis (PCA) revealed that SDS-PAGE clearly separated germination (0-24 h post-imbibition), postgermination (72-216 h post-imbibition) and early seedling growth stages (2 weeks post-imbibition). Image analysis of the two-dimensional gels revealed a total of 732 spots, 103 of which were significantly variable among developmental stages. After MALDI-TOF/TOF MS analysis, 90 spots were identified, belonging to six main functional categories: carbohydrate, amino acids, energy, and protein metabolism, biosynthesis of secondary metabolites, and redox processes. The gel-based approach disclosed important metabolic changes that occurred in the holm oak seed after the germination. However, few proteins were significantly altered during the germination period (from 0 h to 24 h post imbibition) and, because of that, a further shotgun analysis was therefore used to analyse changes in the protein profile during seed germination. Up to 1250 proteins could be confidently identified, with 153 being variable. They belonged to the main functional categories of carbohydrate, amino acids and secondary metabolism, protein degradation, and responses to abiotic stress. The accumulation of proteases and amino acids metabolism proteins in mature seeds can be reflecting the production of energy from the mobilization of storage proteins to start germination. These results, therefore, corroborate the hypothesis that the mature non-orthodox seeds of Q. ilex have all the machinery necessary for rapidly resuming metabolic activities and starting the germination process, in contrast to that occurs in orthodox seeds, which metabolic activity ceases in mature dry seeds. The use of a genus-specific database combined with the public Viridiplantae database improved the quality and quantity of protein identification in this orphan species. In addition, both proteomics approaches (gel-based and shotgun) were complementary, with shotgun increasing by over two-fold the coverage of the proteome analysed. Both approaches provided similar results and supported the same conclusions on the metabolic switch experienced by the seed upon germination. SIGNIFICANCE: The optimal seed germination is a prerequisite for successful seedling establishment and plant vigour, being of great relevance in the case of crops and commercial woody plants. By using a complementary gel-based and gel-free proteomic strategy we have study the protein profiles of the non-orthodox forest tree species Quercus ilex seeds during germination and early seedling growth. The contribution of this work is of great importance, due to the complemented proteomic approaches giving similar clues to the metabolic state of the mature Q. ilex seed before the germination starts, and the metabolic switch experienced by the imbibed acorn until the seedling is established.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge