Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Materials 2020-Sep

An Evaluation of the Reliability of the Results Obtained by the LBET, QSDFT, BET, and DR Methods for the Analysis of the Porous Structure of Activated Carbons

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Mirosław Kwiatkowski
Elżbieta Broniek

Nøgleord

Abstrakt

This paper presents the results of an analysis of the impact of the activator to the product of carbonized materials mass ratio on the porous structure of activated carbons obtained from mahogany, ebony, and hornbeam wood by carbonization and chemical activation with potassium hydroxide. The analyses were carried out on nitrogen adsorption isotherms using the Brunauer-Emmett-Teller (BET), Dubinin-Radushkevitch (DR), and Quenched Solid Density Functional Theory (QSDFT) methods, as well as the numerical clustering-based adsorption analysis (LBET) method. The activated carbons with the best adsorption properties and homogeneous surfaces were obtained at a mass ratio of R = 3. The analyses suggest the significant potential of producing adsorbents characterized by a large surface area and adsorptive capacity from raw materials such as mahogany, ebony, and hornbeam wood. The analyses in question also included an evaluation of the usability and reliability of the results obtained with the employed methods of structural analysis. Particular focus was placed on the limitations of adsorption models and on critically analyzing the output data. Our study shows the unique advantages of the LBET method compared to the other methods used. The LBET method allowed us, for example, to determine the degree of heterogeneity of the surface of the studied activated carbons and the shape of the clusters of adsorbate molecules formed in the pores of the studied material, as well as obtain information about the distribution of adsorption energy on the first adsorbed layer. This study also demonstrates the limitations of the methods used and the necessity to use LBET and QSDFT methods simultaneously for porous structural analysis. The simultaneous analysis of the adsorption isotherms via the LBET and the QSDFT methods makes it possible to choose the optimal preparation conditions while considering the properties of the original raw material. The analyses also suggest the complementary character of the employed methods and the scope of the useful and reliable information that can be obtained with these methods.

Keywords: BET; DR; LBET; QSDFT; activated carbons; activation; adsorption; porous structure.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge