Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2020-Mar

Are arbuscular-mycorrhizal Alnus incana seedlings more resistant to drought than ectomycorrhizal and non-mycorrhizal ones?

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Jouni Kilpeläinen
Pedro Aphalo
Aitor Barbero-López
Bartosz Adamczyk
Sammi Nipu
Tarja Lehto

Nøgleord

Abstrakt

Arbuscular mycorrhizas (AM) prevail in warm and dry climates and ectomycorrhizas (EM) in cold and humid climates. We suggest that the fungal symbionts benefit their host plants especially in the corresponding conditions. The hypothesis tested was that AM plants are more drought resistant than EM or non-mycorrhizal (NM) plants.Gray alder (Alnus incana) seedlings were inoculated with two species of either AM or EM fungi or none. In one controlled-environment experiment, there was a watering and a drought treatment. Another set of seedlings were not watered until permanent wilting.The AM plants were somewhat smaller than EM and NM, and at the early stage of the drought treatment the soil-moisture content was slightly higher in the AM pots. Shoot water potential was highest in the AM treatment during severe drought, while stomatal conductance and photosynthesis did not show a mycorrhizal effect. In the lethal-drought set the AM maintained their leaves longer than EM and NM plants, and the AM seedlings survived longer than NM seedlings. Foliar phosphorus and sulfur concentrations remained higher in AM plants than EM or NM but potassium, copper and iron increased in EM during drought. The root tannin concentration was lower in AM than EM and drought doubled it.Although the difference to EM plants was not large, the hypothesis was supported by the better performance of AM plants during a severe short-termed drought. Sustained phosphorus nutrition during drought in AM plants was a possible reason for this. Moreover, the higher foliar sulfur and lower metal-nutrient concentrations in AM may reflect differences in nutrient uptake or (re)translocation during drought, which merit further research. The much larger tannin concentrations in EM root systems than AM did not appear to protect the EM plants from drought. The differential tannin accumulation in AM and EM plants needs further attention.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge