Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioorganic and Medicinal Chemistry Letters 2019-Dec

Design, synthesis and bio-evaluation of C-1 alkylated tetrahydro-β-carboline derivatives as novel antifungal lead compounds.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Rahul Singh
Aanchal Jaisingh
Indresh Maurya
Deepak Salunke

Nøgleord

Abstrakt

The field of antifungal agent has become static and development of resistance by the pathogen as well as limited clinical efficacy of marketed drugs demand the constant development of new antifungals. The presence of hydrocarbon chain of specific length linked with various different heterocycles was found to be an important structural feature in various antifungal lead compounds. Based on the prominent antimicrobial activity of β-carboline derivatives, a set of C1 alkylated tetrahydro-β-carboline derivatives were proposed to be active against fungi. To validate and confirm the role of suitable alkyl chains linked to a β-carboline scaffold, few related analogues having C1 aryl substituents were also synthesized in one step via classic Pictet-Spengler reaction. The synthesized library was evaluated for its antifungal activity against C. albicans, C. krusei, C. parapsilosis, C. kefyr, C. glabrata, C. tropicalis and C. neoformans. One of the library members (compound 12c), with n-alkyl chain of eight carbons exhibited potent antifungal activity against C. glabrata and C. kefyr. The lead compound, being selectively toxic also demonstrated prominent synergy enhancing the potency of antifungal drugs up to 10-fold. The time kill kinetic studies confirmed the efficacy of compound 12c, where the results obtained were comparable to that of Amp B. FE-SEM analysis revealed the increased asymmetry, disintegration and roughness of cell surface which could be because of the possible interaction of compound 12c at membrane level or interference in cell wall structure. Apoptosis/necrosis detection assay confirmed the significant apoptotic activity in C. glabrata cells after 12c treatment which was responsible for the rapid killing of C. glabrata cells.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge