Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2020-Jan

Ergolide, a potent sesquiterpene lactone induces cell cycle arrest along with ROS-dependent apoptosis and potentiates vincristine cytotoxicity in ALL cell lines.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Amir Yami
Maryam Hamzeloo-Moghadam
Arezoo Darbandi
Afshin Karami
Pargol Mashati
Vahideh Takhviji
Ahmad Gharehbaghian

Nøgleord

Abstrakt

Inula oculus christi belongs to the family of Asteraceae and it was traditionally wide used in treatment of kidney stones and urethra infection; besides, recently the potent sesquiterpene lactones isolated from inula species has gained increasing attention in cancer treatments. This study investigates the anti-cancer properties and underlying mechanism of ergolide isolated from Inula oculus christi against leukemic cell lines.

METHODS
Viability, metabolic activity and proliferation evaluated using different index of MTT assay such as IC50 and GI50. Human erythrocytes were used to evaluate hemolytic activity. Flow-cytometry was used to detect and measure ROS level, and the induction of apoptosis and autophagy were evaluated using Annexin V/PI, Acridine Orange staining, respectively. Moreover, qRT-PCR was performed to examine the expression of a large cohort of crucial regulatory genes. Tunel assay was also carried out to assess morphologically ergolide effects.

Ergolide did not exert ant cytotoxicity against non-tumorous cells and did not cause noticeable hemolysis. It also caused ROS production during early hours after treatment of cells which was then followed by cell cycle arrest in G0/G1 phase and autophagy induction. Using N-acetyl-L-cysteine (NAC), we found that ergolide could not increase ROS and induce autophagy and moreover repressed cell death, indicating that ergolide induce cell death through ROS-dependent manner by altering the expression of pro apoptotic related genes. Autophagy inhibition also potentiated ergolide-induced cell death. Furthermore, ergolide intensified vincristine cytotoxicity against acute lymphoblastic leukemia (ALL) cell lines revealed robust synergistic properties of ergolide with VCR.Here we showed that ergolide could be considered as a potent natural compound against leukemic cells by inducing cell cycle arrest followed by dose-dependent cell death. Based on results, Autophagy response in a result of ROS accumulation acted as a survival pathway and blocking this pathway could noticeably increase ergolide cytotoxicity on ALL cell lines.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge