Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biotechnology for Biofuels 2020-Aug

Exploring the prospective of weeds ( Cannabis sativa L. , Parthenium hysterophorus L.) for biofuel production through nanocatalytic (Co, Ni) gasification

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Nadeem Tahir
Muhammad Tahir
Mujeeb Alam
Wang Yi
Quangou Zhang

Nøgleord

Abstrakt

Background: While keeping in view various aspects of energy demand, quest for the renewable energy sources is utmost. Biomass has shown great potential as green energy source with supply of approximately 14% of world total energy demand, and great source of carbon capture. It is abundant in various forms including agricultural, forestry residues, and unwanted plants (weeds). The rapid growth of weeds not only affects the yield of the crop, but also has strong consequences on the environment. These weeds can grow with minimum nutrient input requirements, have strong ability to grow at various soil and climate environments with high value of cellulose, thus can be valuable source of energy production.

Results: Parthenium hysterophorus L. and Cannabis sativa L. have been employed for the production of biofuels (biogas, biodiesel and biochar) through nano-catalytic gasification by employing Co and Ni as nanocatalysts. Nanocatalysts were synthesized through well-established sol-gel method. SEM study confirms the spherical morphology of the nanocatalysts with size distribution of 20-50 nm. XRD measurements reveal that fabricated nanocatalysts have pure standard crystal structure without impurity. During gasification of Cannabis sativa L., we have extracted the 53.33% of oil, 34.66% of biochar and 12% gas whereas in the case of Parthenium hysterophorus L. 44% oil, 38.36% biochar and 17.66% of gas was measured. Electrical conductivity in biochar of Cannabis sativa L. and Parthenium hysterophorus L. was observed 0.4 dSm-1 and 0.39 dSm-1, respectively.

Conclusion: Present study presents the conversion of unwanted plants Parthenium hysterophorus L. and Cannabis sativa L. weeds to biofuels. Nanocatalysts help to enhance the conversion of biomass to biofuel due to large surface reactivity. Our findings suggest potential utilization of unwanted plants for biofuel production, which can help to share the burden of energy demand. Biochar produced during gasification can replace chemical fertilizers for soil remediation and to enhance the crop productivity.

Keywords: Biochar; Biofuel; Biomass; Nano-catalytic gasification; Weeds.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge