Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2020-Jun

Soil bacterial diversity, structure, and function of Suaeda salsa in rhizosphere and non-rhizosphere soils in various habitats in the Yellow River Delta, China

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Fude Liu
Xue Mo
Weijing Kong
Ye Song

Nøgleord

Abstrakt

Soil microorganisms play a key role in regulating the biogeochemical cycles of ecosystems. However, studies that quantitatively examine bacterial metabolic groups to predict the environmental and biological impacts are limited. In this research, we employed 16S rRNA gene sequencing on an Illumina MiSeq platform to analyze bacterial diversity, structure, function, and driving factors of Suaeda salsa in rhizosphere and non-rhizosphere soils in intertidal and supratidal habitats in the Yellow River Delta, China. Results showed that bacterial richness and Shannon diversity index of the rhizosphere soil were greater in the intertidal than in the supratidal habitat. Although the bacteria of the two habitats changed extremely in community structure, the bacterial groups related to carbohydrate metabolism (CM) and amino acid metabolism (AAM) had higher abundance than the other groups in both habitats. Furthermore, they were higher in the supratidal than the intertidal habitats, and bacterial groups associated with energy metabolism (EM) are opposite. Furthermore, bacterial diversity showed no significant difference between the rhizosphere and non-rhizosphere soils. In the intertidal habitat, the rhizosphere soil had higher EM but lower AAM and CM than the non-rhizosphere soil, which indicated that bacterial structure and function were obviously influenced by the root exudates of S. salsa under flooding and salt stresses. Redundancy analysis showed that the dominant phyla were significantly affected by available phosphorus (51.0%), total potassium (32.2%), moisture content (28.1%), available potassium (25.3%), electrical conductivity (24.2%), total nitrogen (22.8%), total carbon (21.9%), and soil organic matter (21.0%). Overall, the findings provide important insights into the roles of bacterial groups in coastal wetland under climate changes.

Keywords: Bacterial diversity; Bacterial groups; Bacterial structure; Coastal wetland; Rizosphere effect.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge