Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemosphere 2020-Apr

The tolerance mechanism and accumulation characteristics of Phragmites australis to sulfamethoxazole and ofloxacin.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Yao Lv
Yanyan Li
Xiaohui Liu
Kun Xu

Nøgleord

Abstrakt

Antibiotic pollution has become a hot issue worldwide, which has toxic effects on plants and even threatens human health. As a common wetland plant, the tolerance mechanism of Phragmites australis to antibiotics is rarely reported. In this study, we investigated the enrichment characteristics and biological response of P. australis to sulfamethoxazole (SMZ) and ofloxacin (OFL) residues, which are common in the environment. We found that the simulated concentration of antibiotics far exceeded the current level of antibiotic residues in the water environment, but it did not significantly inhibit the growth of P. australis. At 1 mg L-1, OFL and SMZ significantly increased the biomass of P. australis, which was mainly related to the improvement of root activity and photosynthetic efficiency, but the duplex treatment (SMZ + OFL) did not significantly stimulate the growth of reeds. OFL could significantly reduce the accumulation of reactive oxygen species (ROS) in P. australis. When OFL was 1 mg L-1, compared with control, superoxide anion and H2O2 were reduced by 11.19% and 10.76%, respectively, which was mainly related to the improvement of membrane stability. SMZ and SMZ + OFL had no significant effect on ROS, but they significantly increased antioxidant enzyme activity. SMZ and OFL could increase soil invertase, urease, and protease activities, and the tested antibiotics had no significant effect on the Shannon-Wiener index of soil microorganisms. The accumulation of antibiotics within tissues could be ranked as root > leaf > stem, and the accumulation and transport of OFL were higher than those of SMZ.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge