Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

abscisic acid/hypersensitivity

Linket gemmes på udklipsholderen
ArtiklerKliniske forsøgPatenter
Side 1 fra 224 resultater

Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Nuclear factor Y (NF-Y) family proteins are involved in many developmental processes and responses to environmental cues in plants, but whether and how they regulate phytohormone abscisic acid (ABA) signaling need further studies. In the present study, we showed that over-expression of the NF-YC9
Cytosolic calcium increases were analyzed in guard cells of the Arabidopsis farnesyltransferase deletion mutant era1-2 (enhanced response to abscisic acid). At low abscisic acid (ABA) concentrations (0.1 microM), increases of guard cell cytosolic calcium and stomatal closure were activated to a
Calcium is an important second messenger involved in abscisic acid (ABA) signal transduction. Calcium-dependent protein kinases (CDPKs) are the best characterized calcium sensor in plants and are believed to be important components in plant hormone signaling. However, in planta genetic evidence has
UNASSIGNED This work provides the bioinformatics, expression pattern and functional analyses of cryptochrome 1a from sweet sorghum (SbCRY1a), together with an exploration of the signaling mechanism mediated by SbCRY1a. Sweet sorghum [Sorghum bicolor (L.) Moench] is considered to be an ideal

The short-rooted phenotype of the brevis radix mutant partly reflects root abscisic acid hypersensitivity.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
To gain further insight into abscisic acid (ABA) signaling and its role in growth regulation, we have screened for Arabidopsis (Arabidopsis thaliana) mutants hypersensitive to ABA-mediated root growth inhibition. As a result, we have identified a loss-of-function allele of BREVIS RADIX (BRX) in the
Cotton (Gossypium hirsutum) often encounters abiotic stress such as drought and high salinity during its development, and its productivity is significantly limited by those adverse factors. To investigate the molecular adaptation mechanisms of this plant species to abiotic stress, we identified two
In plants, excess reactive oxygen species are toxic molecules induced under environmental stresses, including pathogen invasions and abiotic stresses. Many anti-oxidant defense systems have been reported to require NADPH as an important reducing energy equivalent. However, the sources of NADPH and

The ectopically parting cells 1-2 (epc1-2) mutant exhibits an exaggerated response to abscisic acid.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
The ECTOPICALLY PARTING CELLS 1 (EPC1) gene encodes a putative retaining glycosyltransferase of the GT64 family, and epc1-1 mutant plants have a severely dwarfed phenotype. A new mutant allele of this gene, epc1-2, has been isolated. Reduced cell adhesion that has previously been reported for the
Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or posttranscriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation
Fatty acid amide hydrolase (FAAH) terminates the endocannabinoid signaling pathway that regulates numerous neurobehavioral processes in animals by hydrolyzing N-acylethanolamines (NAEs). Recently, an Arabidopsis FAAH homologue (AtFAAH) was identified, and several studies, especially those using
Abscisic acid (ABA) plays a key role in plant responses to abiotic stress, particularly drought stress. A wide number of ABA-hypersensitive mutants is known, however, only a few of them resist/avoid drought stress. In this work we have generated ABA-hypersensitive drought-avoidant mutants by
The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of
The functional protein phosphatase type 2C from beechnut (Fagus sylvatica; FsPP2C1) was a negative regulator of abscisic acid (ABA) signaling in seeds. In this report, to get deeper insight on FsPP2C1 function, we aim to identify PP2C-interacting partners. Two closely related members (PYL8/RCAR3 and
The Arabidopsis thaliana T-DNA insertion mutant glucose hypersensitive (ghs) 40-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The ghs40-1 mutant displayed severely impaired cotyledon greening and expansion and showed enhanced reduction in hypocotyl elongation of dark-grown
Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to infection by powdery mildew (Golovinomyces cichoracearum). EDR1 encodes a protein kinase, but its substrates and the pathways regulated by EDR1 are unknown. To
Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge