Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

asparagine/dental caries

Linket gemmes på udklipsholderen
ArtiklerKliniske forsøgPatenter
Side 1 fra 63 resultater
During the course of a survey, a new hemoglobin, designated hemoglobin Yoshizuka, has been encountered in a Japanese family. Clinically, mild anemia was noted in five of six heterozygous individuals but no other significant abnormalities were found. Hemoglobin Yoshizuka is characterized by the

Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3 NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3 NSS
ng class="sub-title"> Background: ng> While the influence of microbial invasion of the amniotic cavity on the development of spontaneous preterm delivery is unquestionable, the use of an invasive procedure to diagnosis the status of infection limits its clinical

Investigation of the N-terminal coding region of MUC7 alterations in dentistry students with and without caries.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Human low-molecular weight salivary mucin (MUC7) is a small, secreted glycoprotein coded by MUC7. In the oral cavity, they inhibit the colonization of oral bacteria, including cariogenic ones, by masking their surface adhesions, thus helping saliva to avoid dental caries. The N-terminal domain is
The nucleotide binding sites in A-ATP synthases are located at the interfaces of subunit A and B, which is proposed to play a regulatory role. Differential binding of MgATP and -ADP to subunit B has been described, which does not exist in the related α and B subunits of F-ATP synthases and

Characterization of the active-site residues asparagine 167 and lysine 161 of the IMP-1 metallo beta-lactamase.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
The roles of lysine at position 161 and asparagine at position 167 in IMP-1 metallo beta-lactamase were studied by site-directed mutagenesis. These residues are highly conserved in metallo beta-lactamases and are thought to be present in the active-site cavity. Mutant enzymes with alanine or
The active site of water oxidation in Photosystem II (PSII) is a Mn4CaO5 cluster that is located in a cavity between the D1 and CP43 protein subunits by which it is coordinated. The remainder of this cavity is filled with water molecules, which serve as a source of substrate and participate in
L-Asparaginase (L-asparagine amidohydrolase, EC 3.5.1.1) catalyzes the hydrolysis of L-asparagine to L-aspartic acid and ammonia. It can be used to reduce the formation of acrylamide, which is carcinogenic to humans in foods, via removal of the precursor, asparagine, from the primary ingredients.

Structure of the C-terminal domain of the surface antigen SpaP from the caries pathogen Streptococcus mutans.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
SpaP is a 1500-residue adhesin expressed on the surface of the caries-implicated bacterium Streptococcus mutans. SpaP is a member of the antigen I/II (AgI/II) family of proteins expressed by oral streptococci. These surface proteins are crucial for the incorporation of streptococci into dental

A hypothetical molecular mechanism for TRPV1 activation that invokes rotation of an S6 asparagine.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
The transient receptor potential channel vanilloid type 1 (TRPV1) is activated by a variety of endogenous and exogenous stimuli and is involved in nociception and body temperature regulation. Although the structure of TRPV1 has been experimentally determined in both the closed and open states, very
Acute lymphocytic leukemia (ALL) is an outrageous disease worldwide. L-Asparagine (L-Asn) and L-Glutamine (L-Gln) deamination play a crucial role in ALL treatment. Role of Elspar® (L-asparaginase from Escherichia coli) in regulation of L-Asn and L-Gln has been confirmed by the other researchers
Using our Escherichia coli expression system, we have produced five mutant recombinant (r) hemoglobins (Hbs): r Hb (alpha V96 W), r Hb Presbyterian (beta N108K), r Hb Yoshizuka (beta N108D), r Hb (alpha V96W, beta N108K), and r Hb (alpha V96W, beta N108D). These r Hbs allow us to investigate the
Thymidylate synthase (TS) methylates only dUMP, not dCMP. The crystal structure of TS.dCMP shows sCMP 4-NH2 excluded from the space between Asn-229 and His-199 by the hydrogen bonding and steric properties and Asn-229. Consequently, 6-C of dCMP is over 4 A from the active site sulfhydryl. The

Is asparagine deamidation in the porcine odorant-binding protein related to the odor molecules binding?

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Odorant-binding proteins are biomolecules belonging to the lipocalin family. Among all the odorant-binding proteins, the porcine odorant-binding protein has been well characterized. This protein is a monomer that is characterized by the presence of the beta-barrel structure and of the disulphide
Endo-inulinase INU2 from Aspergillus ficuum belongs to glycosidase hydrolase family 32 (GH32) that degrades inulin into fructo oligosaccharides consisting mainly of inulotriose and inulotetraose. The 3D structure of INU2 was recently obtained (Pouyez et al., 2012, Biochimie, 94, 2423-2430). An
Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge