Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

camellia petelotii/albumin

Linket gemmes på udklipsholderen
Side 1 fra 80 resultater
Epigallocatechin-gallate (EGCG) is the main polyphenol ingredient of green tea. This compound is a strong antioxidant and oxidizes easily. Numerous studies demonstrated its beneficial effects on the human health, for example its anticancer and anti-inflammatory activity. In the body, EGCG is

Effect of (-)-epigallocatechin gallate on the fibrillation of human serum albumin.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Human serum albumin (HSA), the most abundant plasma protein in the human body is known to form fibrils under partial denaturing conditions. Natural polyphenols are known to interact with HSA and some polyphenols have been shown to be potent inhibitors of amyloid fibrillation. (-)-Epigallocatechin
2-Phenylchromone (2PHE) is a flavone, found in cereals and herbs, indispensable in the human diet. Its chemical structure is the basis of all flavonoids present in black and green tea, soybean, red fruits and so on. Although offering such nutritional value, it still requires a molecular approach to

Complexes of green tea polyphenol, epigalocatechin-3-gallate, and 2S albumins of peanut.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
2S albumins of peanuts are seed storage proteins, highly homologous in structure and described as major elicitors of anaphylactic reactions to peanut (allergens Ara h 2 and Ara h 6). Epigallocatechin-3-gallate (EGCG) is the most biologically potent polyphenol of green tea. Non-covalent interactions
The natural antioxidant-associated biological responses appear contradictory since biologically active dosages registered in vitro experiments are considerably higher if compared to concentrations found in vivo. The recent research indicates that natural antioxidants, including the major catechins

Albumin stabilizes (-)-epigallocatechin gallate in human serum: binding capacity and antioxidant property.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
(-)-Epigallocatechin gallate (EGCg) is the major component of green tea and is known to show strong biological activity, although it can be easily oxidized under physiological conditions. In this study, we indicate that EGCg is stable in human serum and that human serum albumin (HSA) stabilizes EGCg

Influence of the galloyl moiety in tea catechins on binding affinity for human serum albumin.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
The major catechins of green tea extract are (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg). Recent research has indicated that catechins form complexes with human serum albumin (HSA) in blood, and differences in their binding
Oxidative deamination by various polyphenolic compounds is presumed to be due to the oxidative conversion of polyphenols to the corresponding quinones through autoxidation. Here we examined the oxidative deamination by the polyphenol-rich beverages green tea, black tea, and coffee at a physiological
The principal green tea polyphenol, (-)-epigallocatechin-3-O-gallate (EGCg), may provide chemoprotection against conditions ranging from cardiovascular disease to cancer. Binding to plasma proteins stabilizes EGCg during its transport to targeted tissues. This study explored the details EGCg binding
Green tea has attracted great interest as a cancer prevention agent. Interactions of tea polyphenols with serum albumin may influence the efficacy of drugs. The interactions of (-)-epigallocatechin-3-gallate (EGCG), (-)-epicatechin-3-gallate (ECG), and tegafur (TF) alone or in combination with human

Structural characteristics of green tea catechins for formation of protein carbonyl in human serum albumin.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Catechins are polyphenolic antioxidants found in green tea leaves. Recent studies have reported that various polyphenolic compounds, including catechins, cause protein carbonyl formation in proteins via their pro-oxidant actions. In this study, we evaluate the formation of protein carbonyl in human
Catechins are the major polyphenols in green tea leaves. Recent studies have suggested that the catechins form complexes with HSA for transport in human blood, and their binding affinity for albumin is believed to modulate their bioavailability. In this study, the binding affinities of catechins and
Green tea is rich in several polyphenols, such as (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC), and (-)-epigallocatechin-3-gallate (EGCG). The biological importance of these polyphenols led us to study the major polyphenol EGCG with human serum albumin (HSA) in an earlier study. In
(-)-Epigallocatechin-3-O-gallate (EGCG), the most abundant polyphenol in green tea, mediates the oxidative modification of proteins, generating protein carbonyls. However, the underlying molecular mechanism remains unclear. Here we analyzed the EGCG-derived intermediates generated upon incubation
The health benefits stemming from green tea are well known, but the exact mechanism of its biological activity is not elucidated. Epicatechin (EC) and epicatechin gallate (ECG) are two dietary catechins ubiquitously present in green tea. Serum albumins functionally carry these catechins through the
Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge