Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

glutamate dehydrogenase/ris

Linket gemmes på udklipsholderen
ArtiklerKliniske forsøgPatenter
10 resultater
As glutamate dehydrogenases (GDHs) of microorganisms usually have higher affinity for NH4+ than do those of higher plants, it is expected that ectopic expression of these GDHs can improve nitrogen assimilation in higher plants. Here, a novel NADP(H)-GDH gene (TrGDH) was
CONCLUSIONS Heterologous expression of a fungal NADP(H)-GDH gene ( MgGDH ) from Magnaporthe grisea can improve dehydration stress tolerance in rice by preventing toxic accumulation of ammonium. Glutamate dehydrogenase (GDH; EC 1.4.1.2 and EC 1.4.1.4) may act as a stress-responsive enzyme in

Assimilation of exogenous cyanide cross talk in Oryza sativa L. to the key nodes in nitrogen metabolism

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Exogenous cyanide (CN-) effects on nitrogen (N) uptake, transport, and assimilation in rice seedlings were investigated at the biochemical and molecular levels. Seedlings were treated with either a 2-d or 4-d supply of potassium cyanide (KCN) in the nutrient solution containing nitrate
Nitrogen metabolism is as sensitive to water stress as photosynthesis, but its role in plant under soil drying is not well understood. We hypothesized that the alterations in N metabolism could be related to the acclimation of photosynthesis to water stress. The features of photosynthesis and N
Salt stress inhibits rice productivity seriously. Nitric oxide (NO) is an endogenous signaling molecule in plants that can improve the resistance of rice to abiotic stresses. Previous studies also showed that nitrogen metabolism is essential for rice stress-tolerance. However, the physiological and

Molecular cloning, characterization and function analysis of a GDH gene from Sclerotinia sclerotiorum in rice.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
The full-length cDNA encoding a glutamate dehydrogenase (GDH) which catalyzes the reaction of reductive amination of α-oxoglutarate (α-OG) to glutamate (the anabolic activity) and the reverse reaction of oxidative deamination of glutamate (the catabolic activity) was isolated from Sclerotinia
Mitochondrial protein import is a complex multistep process from synthesis of proteins in the cytosol, recognition by receptors on the organelle surface, to translocation across one or both mitochondrial membranes and assembly after removal of the targeting signal, referred to as a presequence. In

Intracellular distribution of enzymes associated with nitrogen assimilation in roots.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
The cellular distribution of enzymes involved in nitrogen assimilation: nitrate reductase (EC 1.6.6.2), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 2.6.1.53), and glutamate dehydrogenase (EC 1.4.1.3) has been studied in the roots of five plants: maize

Aspects of nitrogen metabolism in the rice seedling.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
The effects of nitrogen source NO(3) (-) or NH(4) (+) on nitrogen metabolism during the first 2 weeks of germination of the rice seedling (Oryza sativa L., var. IR22) grown in nutrient solution containing 40 mug/ml N were studied. Total, soluble protein, and free amino N levels were higher in the

Protein metabolism in leaves and developing grains of rices differing in grain protein content.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Four semi-dwarf rices (Oryza sativa L.) differing in percentage of grain protein, grown in a flooded field receiving basal N fertilization, had a peak activity of root glutamate dehydrogenase 4 weeks after transplanting. A lower peak occurred during panicle formation 10 weeks after transplanting.
Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge