Deutsch
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oecologia 2006-Feb

Fungal community composition and metabolism under elevated CO(2) and O(3).

Nur registrierte Benutzer können Artikel übersetzen
Einloggen Anmelden
Der Link wird in der Zwischenablage gespeichert
Haegeun Chung
Donald R Zak
Erik A Lilleskov

Schlüsselwörter

Abstrakt

Atmospheric CO(2) and O(3) concentrations are increasing due to human activity and both trace gases have the potential to alter C cycling in forest ecosystems. Because soil microorganisms depend on plant litter as a source of energy for metabolism, changes in the amount or the biochemistry of plant litter produced under elevated CO(2) and O(3) could alter microbial community function and composition. Previously, we have observed that elevated CO(2) increased the microbial metabolism of cellulose and chitin, whereas elevated O(3) dampened this response. We hypothesized that this change in metabolism under CO(2) and O(3) enrichment would be accompanied by a concomitant change in fungal community composition. We tested our hypothesis at the free-air CO(2) and O(3) enrichment (FACE) experiment at Rhinelander, Wisconsin, in which Populus tremuloides, Betula papyrifera, and Acer saccharum were grown under factorial CO(2) and O(3) treatments. We employed extracellular enzyme analysis to assay microbial metabolism, phospholipid fatty acid (PLFA) analysis to determine changes in microbial community composition, and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) to analyze the fungal community composition. The activities of 1,4-beta-glucosidase (+37%) and 1,4,-beta-N-acetylglucosaminidase (+84%) were significantly increased under elevated CO(2), whereas 1,4-beta-glucosidase activity (-25%) was significantly suppressed by elevated O(3). There was no significant main effect of elevated CO(2) or O(3) on fungal relative abundance, as measured by PLFA. We identified 39 fungal taxonomic units from soil using DGGE, and found that O(3) enrichment significantly altered fungal community composition. We conclude that fungal metabolism is altered under elevated CO(2) and O(3), and that there was a concomitant change in fungal community composition under elevated O(3). Thus, changes in plant inputs to soil under elevated CO(2) and O(3) can propagate through the microbial food web to alter the cycling of C in soil.

Treten Sie unserer
Facebook-Seite bei

Die vollständigste Datenbank für Heilkräuter, die von der Wissenschaft unterstützt wird

  • Arbeitet in 55 Sprachen
  • Von der Wissenschaft unterstützte Kräuterkuren
  • Kräutererkennung durch Bild
  • Interaktive GPS-Karte - Kräuter vor Ort markieren (in Kürze)
  • Lesen Sie wissenschaftliche Veröffentlichungen zu Ihrer Suche
  • Suchen Sie nach Heilkräutern nach ihrer Wirkung
  • Organisieren Sie Ihre Interessen und bleiben Sie über Neuigkeiten, klinische Studien und Patente auf dem Laufenden

Geben Sie ein Symptom oder eine Krankheit ein und lesen Sie über Kräuter, die helfen könnten, geben Sie ein Kraut ein und sehen Sie Krankheiten und Symptome, gegen die es angewendet wird.
* Alle Informationen basieren auf veröffentlichten wissenschaftlichen Forschungsergebnissen

Google Play badgeApp Store badge