Deutsch
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Metabolic Engineering 2009-Jan

Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene.

Nur registrierte Benutzer können Artikel übersetzen
Einloggen Anmelden
Der Link wird in der Zwischenablage gespeichert
Jennifer R Anthony
Larry C Anthony
Farnaz Nowroozi
Gina Kwon
Jack D Newman
Jay D Keasling

Schlüsselwörter

Abstrakt

The introduction or creation of metabolic pathways in microbial hosts has allowed for the production of complex chemicals of therapeutic and industrial importance. However, these pathways rarely function optimally when first introduced into the host organism and can often deleteriously affect host growth, resulting in suboptimal yields of the desired product. Common methods used to improve production from engineered biosynthetic pathways include optimizing codon usage, enhancing production of rate-limiting enzymes, and eliminating the accumulation of toxic intermediates or byproducts to improve cell growth. We have employed these techniques to improve production of amorpha-4,11-diene (amorphadiene), a precursor to the anti-malarial compound artemisinin, by an engineered strain of Escherichia coli. First we developed a simple cloning system for expression of the amorphadiene biosynthetic pathway in E. coli, which enabled the identification of two rate-limiting enzymes (mevalonate kinase (MK) and amorphadiene synthase (ADS)). By optimizing promoter strength to balance expression of the encoding genes we alleviated two pathway bottlenecks and improved production five fold. When expression of these genes was further increased by modifying plasmid copy numbers, a seven-fold increase in amorphadiene production over that from the original strain was observed. The methods demonstrated here are applicable for identifying and eliminating rate-limiting steps in other constructed biosynthetic pathways.

Treten Sie unserer
Facebook-Seite bei

Die vollständigste Datenbank für Heilkräuter, die von der Wissenschaft unterstützt wird

  • Arbeitet in 55 Sprachen
  • Von der Wissenschaft unterstützte Kräuterkuren
  • Kräutererkennung durch Bild
  • Interaktive GPS-Karte - Kräuter vor Ort markieren (in Kürze)
  • Lesen Sie wissenschaftliche Veröffentlichungen zu Ihrer Suche
  • Suchen Sie nach Heilkräutern nach ihrer Wirkung
  • Organisieren Sie Ihre Interessen und bleiben Sie über Neuigkeiten, klinische Studien und Patente auf dem Laufenden

Geben Sie ein Symptom oder eine Krankheit ein und lesen Sie über Kräuter, die helfen könnten, geben Sie ein Kraut ein und sehen Sie Krankheiten und Symptome, gegen die es angewendet wird.
* Alle Informationen basieren auf veröffentlichten wissenschaftlichen Forschungsergebnissen

Google Play badgeApp Store badge