Deutsch
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Radiology 2019-May

Prediction of molecular subtypes of breast cancer using BI-RADS features based on a "white box" machine learning approach in a multi-modal imaging setting.

Nur registrierte Benutzer können Artikel übersetzen
Einloggen Anmelden
Der Link wird in der Zwischenablage gespeichert
Mingxiang Wu
Xiaoling Zhong
Quanzhou Peng
Mei Xu
Shelei Huang
Jialin Yuan
Jie
Tao Tan

Schlüsselwörter

Abstrakt

To develop and validate an interpretable and repeatable machine learning model approach to predict molecular subtypes of breast cancer from clinical metainformation together with mammography and MRI images.We retrospectively assessed 363 breast cancer cases (Luminal A 151, Luminal B 96, HER2 76, and BLBC 40). Eighty-two features defined in the BI-RADS lexicon were visually described. A decision tree model with the Chi-squared automatic interaction detector (CHAID) algorithm was applied for feature selection and classification. A 10-fold cross-validation was performed to investigate the performance (i.e., accuracy, positive predictive value, sensitivity, and F1-score) of the decision tree model.Seven of the 82 variables were derived from the decision tree-based feature selection and used as features for the classification of molecular subtypes including mass margin calcification on mammography, mass margin types of kinetic curves in the delayed phase, mass internal enhancement characteristics, non-mass enhancement distribution on MRI, and breastfeeding history. The decision tree model accuracy was 74.1%. For each molecular subtype group, Luminal A achieved a sensitivity, positive predictive value, and F1-score of 79.47%, 75.47%, and 77.42%, respectively; Luminal B showed a sensitivity, positive predictive value, and F1-score of 64.58%, 55.86%, and 59.90%, respectively; HER2 had a sensitivity, positive predictive value, and F1-scores of 81.58%, 95.38%, and 87.94%, respectively; BLBC showed sensitivity, positive predictive value, and F1-scores of 62.50%, 89.29%, and 73.53%, respectively.We applied a complete "white box" machine learning method to predict the molecular subtype of breast cancer based on the BI-RADS feature description in a multi-modal setting. By combining BI-RADS features in both mammography and MRI, the prediction accuracy is boosted and robust. The proposed method can be easily applied widely regardless of variability of imaging vendors and settings because of the applicability and acceptance of the BI-RADS.

Treten Sie unserer
Facebook-Seite bei

Die vollständigste Datenbank für Heilkräuter, die von der Wissenschaft unterstützt wird

  • Arbeitet in 55 Sprachen
  • Von der Wissenschaft unterstützte Kräuterkuren
  • Kräutererkennung durch Bild
  • Interaktive GPS-Karte - Kräuter vor Ort markieren (in Kürze)
  • Lesen Sie wissenschaftliche Veröffentlichungen zu Ihrer Suche
  • Suchen Sie nach Heilkräutern nach ihrer Wirkung
  • Organisieren Sie Ihre Interessen und bleiben Sie über Neuigkeiten, klinische Studien und Patente auf dem Laufenden

Geben Sie ein Symptom oder eine Krankheit ein und lesen Sie über Kräuter, die helfen könnten, geben Sie ein Kraut ein und sehen Sie Krankheiten und Symptome, gegen die es angewendet wird.
* Alle Informationen basieren auf veröffentlichten wissenschaftlichen Forschungsergebnissen

Google Play badgeApp Store badge