Deutsch
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied Microbiology and Biotechnology 2016-Jan

Substrate preference of citrus naringenin rhamnosyltransferases and their application to flavonoid glycoside production in fission yeast.

Nur registrierte Benutzer können Artikel übersetzen
Einloggen Anmelden
Der Link wird in der Zwischenablage gespeichert
Takao Ohashi
Yuka Hasegawa
Ryo Misaki
Kazuhito Fujiyama

Schlüsselwörter

Abstrakt

Flavonoids, which comprise a large family of secondary plant metabolites, have received increased attention in recent years due to their wide range of features beneficial to human health. One of the most abundant flavonoid skeletons in citrus species is the flavanone naringenin, which is accumulated as glycosides containing terminal rhamnose (Rha) after serial glycosylation steps. The linkage type of Rha residues is a determining factor in the bitterness of the citrus fruit. Such Rha residues are attached by either an α1,2- or an α1,6-rhamnosyltransferase (1,2RhaT or 1,6RhaT). Although the genes encoding these RhaTs from pummelo (Citrus maxima) and orange (Citrus sinensis) have been functionally characterized, the details of the biochemical characterization, including the substrate preference, remain elusive due to the lack of availability of the UDP-Rha required as substrate. In this study, an efficient UDP-Rha in vivo production system using the engineered fission yeast expressing Arabidopsis thaliana rhamnose synthase 2 (AtRHM2) gene was constructed. The in vitro RhaT assay using the constructed UDP-Rha revealed that recombinant RhaT proteins (Cm1,2RhaT; Cs1,6RhaT; or Cm1,6RhaT), which were heterologously produced in fission yeast, catalyzed the rhamnosyl transfer to naringenin-7-O-glucoside as an acceptor. The substrate preference analysis showed that Cm1,2RhaT had glycosyl transfer activity toward UDP-xylose as well as UDP-Rha. On the other hand, Cs1,6RhaT and Cm1,6RhaT showed rhamnosyltransfer activity toward quercetin-3-O-glucoside in addition to naringenin-7-O-glucoside, indicating weak specificity toward acceptor substrates. Finally, naringin and narirutin from naringenin-7-O-glucoside were produced using the engineered fission yeast expressing the AtRHM2 and the Cm1,2RhaT or the Cs1,6RhaT genes as a whole-cell-biocatalyst.

Treten Sie unserer
Facebook-Seite bei

Die vollständigste Datenbank für Heilkräuter, die von der Wissenschaft unterstützt wird

  • Arbeitet in 55 Sprachen
  • Von der Wissenschaft unterstützte Kräuterkuren
  • Kräutererkennung durch Bild
  • Interaktive GPS-Karte - Kräuter vor Ort markieren (in Kürze)
  • Lesen Sie wissenschaftliche Veröffentlichungen zu Ihrer Suche
  • Suchen Sie nach Heilkräutern nach ihrer Wirkung
  • Organisieren Sie Ihre Interessen und bleiben Sie über Neuigkeiten, klinische Studien und Patente auf dem Laufenden

Geben Sie ein Symptom oder eine Krankheit ein und lesen Sie über Kräuter, die helfen könnten, geben Sie ein Kraut ein und sehen Sie Krankheiten und Symptome, gegen die es angewendet wird.
* Alle Informationen basieren auf veröffentlichten wissenschaftlichen Forschungsergebnissen

Google Play badgeApp Store badge