Greek
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2003

Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and in soil eluates.

Μόνο εγγεγραμμένοι χρήστες μπορούν να μεταφράσουν άρθρα
Σύνδεση εγγραφή
Ο σύνδεσμος αποθηκεύεται στο πρόχειρο
Peter Schröder
Claudia Fischer
Reinhard Debus
Andrea Wenzel

Λέξεις-κλειδιά

Αφηρημένη

INTENTION, GOAL, BACKGROUND: The widespread and unconcerned use of chemicals in the past has led to an accumulation of pollutants in our environment. Numerous sites are polluted with a mixture of organic chemicals and heavy metals. The future use of these sites and the safe consumption of groundwater from these areas depends on our ability to assess risk by determining the bioavailability of trace levels of pollutants in the respective soil solutions. Soil eluates containing heavy metals in mixture as well as pure heavy metals in aqueous solution were added to a spruce cell culture to set up such a test system.

OBJECTIVE

The present study aims at evaluating the response of cultured spruce cells to heavy metals in aqueous solution, and at characterizing these basic cellular responses as potential biomarkers.

METHODS

In order to characterize cell reactions toward heavy metals, spruce cell cultures were incubated with CdSO4 (50 to 500 microM), Na2HAsO4 (1.5 to 80 microM) or PbCl2 (10 to 150 microM). Alternatively, the cells were incubated with a standard heavy metal mixture containing 80 microM Na2HAsO4, 150 microM CdSO4 and 150 microM PbCl2 in medium and with aqueous original soil eluates. Measurement of oxidative stress, antioxidants and basic detoxification enzymes involved in plant defence reactions were performed with the treated cells.

CONCLUSIONS

After 5 hrs of incubation, the onset of a strong oxidative burst was observed. H2O2 concentrations exceeded 40 microM in the culture media after 20 hrs. Concomitantly, glutathione levels showed drastic changes indicating the influence of the metals and/or the H2O2 on antioxidative systems. Following cadmium treatment, GSH and GSSG were elevated by 50 and 200% above controls. Whereas arsenic doubled GSSG levels, treatment with lead did not cause significant changes. However, a mixture of the metals decreased both metabolites by 50%. The effect of the metals was concentration-dependent and disappeared at high concentrations. Furthermore, strong induction of glutathione S-transferase (GST) subunits was observed and, although no novel subunit was expressed, the rise of a new GST isoform occurred. The most potent inducer of plant defence reactions is cadmium, followed by arsenate and lead in descending order of effectiveness. Counter ions seem to play an important role, e.g. lead chloride influenced the investigated parameters much more than lead acetate.

CONCLUSIONS

The investigated metals activate gene expression through signal transduction pathways previously not associated with these metals, which points to new end points for resistance and toxicity testing. Especially a monitoring of GST subunit behaviour together with quantifying the oxidative burst seem to be promising for a biomonitoring concept. The close regulation of plant answers observed may facilitate the setup of an integrated biotest for heavy metal pollution that could be based on enzymological as well as proteome data.

CONCLUSIONS

Heavy metals cause stress to plant cells and elicit a whole range of answers, although specific for individual metal species. The differences observed in plant answers are suitable to distinguish between metals bioavailable in soil eluates and water samples, however only at concentrations in the microM range. It will be necessary to evaluate the effects on the RNA and transcript level. We recommend that similar plant metabolic end points and enzyme reactions be screened for their suitability as biotest systems.

Γίνετε μέλος της σελίδας
μας στο facebook

Η πληρέστερη βάση δεδομένων φαρμακευτικών βοτάνων που υποστηρίζεται από την επιστήμη

  • Λειτουργεί σε 55 γλώσσες
  • Βοτανικές θεραπείες που υποστηρίζονται από την επιστήμη
  • Αναγνώριση βοτάνων με εικόνα
  • Διαδραστικός χάρτης GPS - ετικέτα βότανα στην τοποθεσία (σύντομα)
  • Διαβάστε επιστημονικές δημοσιεύσεις που σχετίζονται με την αναζήτησή σας
  • Αναζήτηση φαρμακευτικών βοτάνων με τα αποτελέσματά τους
  • Οργανώστε τα ενδιαφέροντά σας και μείνετε ενημερωμένοι με την έρευνα ειδήσεων, τις κλινικές δοκιμές και τα διπλώματα ευρεσιτεχνίας

Πληκτρολογήστε ένα σύμπτωμα ή μια ασθένεια και διαβάστε για βότανα που μπορεί να βοηθήσουν, πληκτρολογήστε ένα βότανο και δείτε ασθένειες και συμπτώματα κατά των οποίων χρησιμοποιείται.
* Όλες οι πληροφορίες βασίζονται σε δημοσιευμένη επιστημονική έρευνα

Google Play badgeApp Store badge