10 Αποτελέσματα
Chickpea (Cicer arietium L.) produces the antimicrobial compounds (phytoalexins) medicarpin and maackiain in response to infection by microorganisms. Nectria haematococca mating population (MP) VI, a fungus pathogenic on chickpea, can metabolize maackiain and medicarpin to less toxic products. These
In Nectria haematococca the MAK1 gene product converts a chick-pea (Cicer arietinum) phytoalexin, maackiain, into a less toxic compound. The presence of MAK1 in this fungal pathogen is also correlated with high virulence on chick-pea. Previous genetic analysis suggested that MAK1 is located on a
The scientific and technological applications of one of the nanomaterials viz.; carbon dot (C-dots), having extraordinary properties, is becoming an emerging and ongoing research area in recent times. In the present study, we have evaluated the effectiveness of C-dots in reducing arsenic (As)
The plant metallothionein2 from Cicer arietinum (chickpea), cic-MT2, is known to coordinate five divalent metal ions such as Zn(II) or Cd(II), which are arranged in a single metal thiolate cluster. When the Zn(II) form of the protein is titrated with Cd(II) ions in the presence of sulfide ions, an
UDP-glycosyltransferases (EC 2.4.1.x; UGTs) are enzymes coded by an important gene family of higher plants. They are involved in the modification of secondary metabolites, phytohormones, and xenobiotics by transfer of sugar moieties from an activated nucleotide molecule to a wide range of acceptors.
In the present study we are investigating the Cr(VI) reduction potential of a multi-metal tolerant fungus (isolate CR700); isolated from electroplating wastewater. Based on the ITS region sequencing, the isolate was identified as Trichoderma lixii isolate CR700 and able to tolerate
The present study demonstrates the comparative response of two contrasting genotypes (aluminum (Al) tolerant and Al sensitive) of chick pea (Cicer arietinum) against Al stress. The Al-tolerant genotype (RSG 974) showed lesser inhibition of root growth as well as lower oxidative damages, measured in
Some isolates of the plant-pathogenic fungus Nectria haematococca mating population (MP) VI metabolize maackiain and medicarpin, two antimicrobial compounds (phytoalexins) synthesized by chickpea (Cicer arietinum L.). The enzymatic modifications by the fungus convert the phytoalexins to less toxic
Microbial infection of plants or elicitation of cell cultures initiates substantial metabolic changes directed at the induction of defence reactions. The antimicrobial phytoalexins deserve special attention because they represent one essential component of plant resistance. The great structural
Phosphate (Pi) deficiency is known to be a major limitation for symbiotic nitrogen fixation (SNF), and hence legume crop productivity globally. However, very little information is available on the adaptive mechanisms, particularly in the important legume crop chickpea (Cicer arietinum L.), which