10 Αποτελέσματα
Corn (Zea mays, L.), bean (Phaseolus vulgaris L.), barley (Hordeum vulgare L.), spinach (Spinacia oleracea L.), and sugarbeet (Beta vulgaris L.) grown under iron deficiency, and Potamogeton pectinatus L, and Potamogeton nodosus Poir. grown under oxygen deficiency, contained less chlorophyll than the
Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy vegetables such as spinach and lettuce. Though long believed inert, nitrate can be reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to nitric oxide. Dietary nitrate has thus been
This study evaluated the effect of produce type, resuspension medium, dose uniformity ratio (DUR), and sample preparation conditions (tissue exposure, MAP, anoxia) on the D₁₀ -value of an Escherichia coli cocktail (BAA-1427, BAA-1428, and BAA-1430) and Salmonella Typhimurium LT2 inoculated on the
Plants synthesize betaine by a two-step oxidation of choline (choline --> betaine aldehyde --> betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness (AD Hanson et al. 1985 Proc Natl Acad Sci USA 82: 3678-3682). We
This article provides an overview of the current literature relating to the efficacy of dietary nitrate (NO3-) ingestion in altering aspects of cardiovascular and metabolic health and exercise capacity in healthy and diseased individuals. The consumption of NO3--rich vegetables, such as spinach and
Nitrate reductase (NR) activity in spinach leaf extracts prepared in the presence of a protein phosphatase inhibitor (50 microM cantharidine) was measured in the presence of Mg2+ (NRact) or EDTA (NRmax), under substrate saturation. These in-vitro activities were compared with nitrate reduction rates
Changes of amino acid concentrations (proline, glutamate, asparagine, aspartate, alanine) and glutamate kinase activity (GKA) in plants under arsenic chronic stress reported here reveal their role in plant arsenic stress adaptation. Results of the pot experiment confirmed the toxic effect of arsenic
NO (nitric oxide) production from sunflower plants (Helianthus annuus L.), detached spinach leaves (Spinacia oleracea L.), desalted spinach leaf extracts or commercial maize (Zea mays L.) leaf nitrate reductase (NR, EC 1.6.6.1) was continuously followed as NO emission into the gas phase by
Plants have evolved to cope with fluctuations in water supply by gating their water channels known as aquaporins. During flooding, a rapid drop of cytosolic pH due to anoxia leads to a simultaneous closure of the aquaporins in the plasma membrane. The closing mechanism has been suggested to involve
Plants counteract fluctuations in water supply by regulating all aquaporins in the cell plasma membrane. Channel closure results either from the dephosphorylation of two conserved serine residues under conditions of drought stress, or from the protonation of a conserved histidine residue following a