English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chinese Medical Journal 2011-Sep

1,5-dicaffeoylquinic acid protects primary neurons from amyloid β 1-42-induced apoptosis via PI3K/Akt signaling pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hai-bing Xiao
Xu Cao
Lei Wang
Xiao-qin Run
Ying Su
Cheng Tian
Sheng-gang Sun
Zhi-hou Liang

Keywords

Abstract

BACKGROUND

Recently, 1,5-dicaffeoylquinic acid (1,5-DQA), a caffeoylquinic acid derivative isolated from Aster scaber, was found to have neuroprotective effects. However, the protective mechanisms of 1,5-DQA have not yet been clearly identified. The purpose of this study was to explore the protective mechanisms of 1,5-DQA on neuronal culture.

METHODS

We investigated the neuroprotective effects of 1,5-DQA against amyloid β(1-42) (Aβ(42))-induced neurotoxicity in primary neuronal culture. To evaluate the neuroprotective effects of 1,5-DQA, primary cultured cortical neurons from neonate rats were pretreated with 1,5-DQA for 2 hours and then treated with 40 µmol/L Aβ(42) for 6 hours. Cell counting kit-8, Hoechst staining and Western blotting were used for detecting the protective mechanism. Comparisons between two groups were evaluated by independent t test, and multiple comparisons were analyzed by one-way analysis of variance (ANOVA).

RESULTS

1,5-DQA treated neurons showed increased neuronal cell viability against Aβ(42) toxicity in a concentration-dependent manner, both phosphoinositide 3-kinase (PI3K)/Akt and extracellular regulated protein kinase 1/2 (Erk1/2) were activated by 1,5-DQA with stimulating their upstream tyrosine kinase A (Trk A). However, the neuroprotective effects of 1,5-DQA were blocked by LY294002, a PI3K inhibitor, but not by PD98059, an inhibitor of mitogen-activated protein kinase kinase. Furthermore, 1,5-DQA's anti-apoptotic potential was related to the enhanced inactivating phosphorylation of glycogen synthase kinase 3β (GSK3β) and the modulation of expression of apoptosis-related protein Bcl-2/Bax.

CONCLUSIONS

These results suggest that 1,5-DQA prevents Aβ(42)-induced neurotoxicity through the activation of PI3K/Akt followed by the stimulation of Trk A, then the inhibition of GSK3β as well as the modulation of Bcl-2/Bax.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge