English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biological and Pharmaceutical Bulletin 2018

2,3-Dimethoxy-5-methyl-p-benzoquinone (Coenzyme Q0) Disrupts Carbohydrate Metabolism of HeLa Cells by Adduct Formation with Intracellular Free Sulfhydryl-Groups, and Induces ATP Depletion and Necrosis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Takayuki Takahashi
Yukitoshi Mine
Tadashi Okamoto

Keywords

Abstract

2,3-Dimethoxy-5-methyl-p-benzoquinone is a common chemical structure of coenzyme Q (CoQ) that conjugates different lengths of an isoprenoid side chain at the 6-position of the p-benzoquinone ring. In a series of studies to explore the cytotoxic mechanism of CoQ homologues with a short isoprenoid side chain, we found that a CoQ analogue without an isoprenoid side chain, CoQ0, showed marked toxicity against HeLa cells in comparison with cytotoxic homologues. Therefore, we examined the cytotoxic mechanism of CoQ0. Different from the cytotoxic CoQ homologues that induced apoptosis, 100 µM CoQ0 induced necrosis of HeLa cells. The CoQ0-induced cell death was accompanied by a decrease in endogenous non-protein and protein-associated sulfhydryl (SH)-groups, but this improved with the concomitant addition of compounds with SH-groups but not antioxidants without SH-groups. In addition, UV-spectrum analysis suggested that CoQ0 could rapidly form S-conjugated adducts with compounds with SH-groups by Michael addition. On the other hand, enzyme activities of both glyceraldehyde-3-phosphate dehydrogenase, which has a Cys residue in the active site, and α-ketoglutarate dehydrogenase complex, which requires cofactors with SH-groups, CoA and protein-bound α-lipoic acid, and CoA and ATP contents in the cells were significantly decreased by the addition of CoQ0 but not CoQ1. Furthermore, the decrease of an endogenous antioxidant, glutathione (GSH), by CoQ0 treatment was much greater than the predicted increase of endogenous GSH disulfide. These results suggest that CoQ0 rapidly forms S-conjugate adducts with these endogenous non-protein and protein-associated SH-groups of HeLa cells, which disrupts carbohydrate metabolism followed by intracellular ATP depletion and necrotic cell death.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge