English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
ACS Applied Materials & Interfaces 2017-Oct

3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Napolabel B Palaganas
Joey Dacula Mangadlao
Al Christopher C de Leon
Jerome O Palaganas
Katrina D Pangilinan
Yan Jie Lee
Rigoberto C Advincula

Keywords

Abstract

The advantages of 3D printing on cost, speed, accuracy, and flexibility have attracted several new applications in various industries especially in the field of medicine where customized solutions are highly demanded. Although this modern fabrication technique offers several benefits, it also poses critical challenges in materials development suitable for industry use. Proliferation of polymers in biomedical application has been severely limited by their inherently weak mechanical properties despite their other excellent attributes. Earlier works on 3D printing of polymers focus mainly on biocompatibility and cellular viability and lack a close attention to produce robust specimens. Prized for superior mechanical strength and inherent stiffness, cellulose nanocrystal (CNC) from abaca plant is incorporated to provide the necessary toughness for 3D printable biopolymer. Hence, this work demonstrates 3D printing of CNC-filled biomaterial with significant improvement in mechanical and surface properties. These findings may potentially pave the way for an alternative option in providing innovative and cost-effective patient-specific solutions to various fields in medical industry. To the best of our knowledge, this work presents the first successful demonstration of 3D printing of CNC nanocomposite hydrogel via stereolithography (SL) forming a complex architecture with enhanced material properties potentially suited for tissue engineering.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge