English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2013-Jan

3,5-Dimethoxy-4-(3-(2-carbonyl-ethyldisulfanyl)-propionyl)-benzoic acid 4-guanidino-butyl ester: a novel twin drug that prevents primary cardiac myocytes from hypoxia-induced apoptosis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chunhua Liu
Wei Guo
Stefanie Maerz
Xianfeng Gu
Yizhun Zhu

Keywords

Abstract

Leonurine possesses cardioprotective effects in myocardial ischemia due to its anti-apoptotic properties. However, the process to isolate and purify leonurine is difficult, because of its low content in the Herb Leonuri and its impurity. Moreover, the high dosage used indicates low potency of leonurine. To overcome these defects, we had synthesized a novel twin drug of leonurine, 3,5-dimethoxy-4-(3-(2-carbonyl-ethyldisulfanyl)-propionyl)-benzoic acid 4-guanidino-butyl ester (compound 2). In this paper, we focused on investigating the cardioprotective effect and underlying mechanisms of compound 2. Our data showed that cell viability was significantly increased in a dose-dependent manner and the levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were also significantly attenuated in the compound 2-treated group. In addition, we observed the cardioprotective effects by Hoechst 33258 nucleus staining, JC-1 staining, Annexin V-FITC/PI staining and transmission electron microscopy. Compound 2 inhibited apoptosis by reducing the ratio of Bcl-2/Bax, decreasing cleaved-caspase-3 expression and enhancing the phosphorylation of Akt. Furthermore, the phosphorylation effect of compound 2 was reversed by LY294002 the phosphatidylinositol-3-kinase (PI3K) inhibitor from happening. We concluded that compound 2 played a cardioprotective role in hypoxia-induced primary cardiac myocytes apoptosis partly via modulating the PI3K/Akt pathway at a 10-fold lower concentration than leonurine.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge