English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chinese Medical Journal 2019-Dec

3-Bromopyruvate alleviates the development of monocrotaline-induced rat pulmonary arterial hypertension by decreasing aerobic glycolysis, inducing apoptosis, and suppressing inflammation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jie Liu
Wang Wang
Lei Wang
Xian-Mei Qi
Yu-Hui Sha
Ting Yang

Keywords

Abstract

Pulmonary arterial hypertension (PH) is a progressive disease with limited therapeutic options, ultimately leading to right heart failure and death. Recent findings indicate the role of the Warburg effect (aerobic glycolysis) in the development of PH. However, the effect of the glycolysis inhibitor 3-bromopyruvate (3-BrPA) on the pathogenesis of PH has not been well investigated. This study aimed to determine whether 3-BrPA inhibits PH and its possible mechanism.PH was induced in adult Sprague-Dawley rats by a single intraperitoneal injection of monocrotaline (MCT). 3-BrPA, or phosphate-buffered saline (PBS) was administered via intraperitoneal injection every other day from the first day of MCT-injection to 4 weeks of follow-up, and indices such as right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), pulmonary arteriolar remodeling indicated by percent media thickness (% MT), lactate levels and glucose consumption, were evaluated. Pulmonary arteriolar remodeling and right ventricular hypertrophy were observed in hematoxylin-eosin-stained lung sections. Western blotting, immunohistochemistry, and/or immunofluorescence analyses were used to measure the expression of relevant proteins. A cytochrome C release apoptosis assay and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining were used to measure cell apoptosis.MCT-induced PH showed a significant increase in glucose consumption (0 vs. 4 weeks: 0.87 ± 0.23 vs. 2.94 ± 0.47, P = 0.0042) and lactate production (0 vs. 4 weeks: 4.19 ± 0.34 vs. 8.06 ± 0.67, P = 0.0004). Treatment with 3-BrPA resulted in a concomitant reduction in glucose consumption (1.10 ± 0.35 vs. 3.25 ± 0.47, P = 0.0063), lactate production (5.09 ± 0.55 vs. 8.06 ± 0.67, P = 0.0065), MCT-induced increase in RVSP (39.70 ± 2.94 vs. 58.85 ± 2.32, P = 0.0004), pulmonary vascular remodeling (% MT, 43.45% ± 1.41% vs. 63.66% ± 1.78%, P < 0.0001), and right ventricular hypertrophy (RVHI, 38.57% ± 2.69% vs. 62.61% ± 1.57%, P < 0.0001) when compared with those of the PBS-treated group. 3-BrPA, a hexokinase 2 inhibitor, exerted its beneficial effect on PH by decreasing aerobic glycolysis and was also associated with inhibiting the expression of glucose transporter protein-1, inducing apoptosis, and suppressing inflammation.3-BrPA might have a potential beneficial effect on the PH treatment.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge