English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Neuroanatomy 2019-Mar

5-methylcytosine and 5-hydroxymethylcytosine in brains of patients with multiple system atrophy and patients with Parkinson's disease.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Oliver Kaut
Klaus Kuchelmeister
Christoph Moehl
Ullrich Wüllner

Keywords

Abstract

Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder of unknown etiology, characterized pathologically by α-synuclein aggregates preferentially found in oligodendroglial cells. DNA methylation has emerged as a mechanism of regulation of α-synuclein expression. Reduced 5-methylcytosine (5-mC) DNA methylation of α-synuclein has been found in the brains of patients with Parkinson's disease (PD). 5-hydroxymethylcytosine (5-hmC) methylation is another epigenetic modification of DNA. It is involved in the de-methylation of DNA, gene regulation, and DNA repair mechanisms. Here, we examined sections of human paraffin-embedded brain tissue from the cerebellum and brain stem, including the substantia nigra pars compacta, of patients with PD (n = 8) and MSA (n = 8) as well as age-matched controls (n = 8). The neocortical tissue of PD patients (n = 10) and controls (n = 10) was also examined. Using immunohistochemistry, we analyzed the expression of 5-mC and 5-hmC with an automatic, rater-independent semi-quantification method. We found a significant upregulation of 5-mC, but not 5-hmC, in cortical sections from PD patients. The brain stem and substantia nigra, and in particular the dopaminergic neurons, showed unchanged levels of both 5-mC- and 5-hmC-immunoreactivity in all groups. In the cerebellum, 5-mC was significantly decreased only in MSA patients in the granule cell layer; in contrast, 5-hmC was significantly upregulated in the cerebellar white matter of both PD and MSA patients. Our study showed different levels of expression of total 5-mC and 5-hmC methylation across different brain regions in PD and for the first time in MSA. Our results indicate that 5-mC may be relevant in MSA. The underlying mechanism of the differential 5-mC and 5-hmC expression remains unclear.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge