English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemico-Biological Interactions 2019-Jul

6-Gingerol abates benzo[a]pyrene-induced colonic injury via suppression of oxido-inflammatory stress responses in BALB/c mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Babajide Ajayi
Isaac Adedara
Ebenezer Farombi

Keywords

Abstract

Exposure to benzo[a]pyrene (BaP), the most toxic polycyclic aromatic hydrocarbon and a procarcinogen, is a global health concern which necessitates preventive measures. [6]-Gingerol (6-G), the most pharmacologically active constituent of ginger has been reported to promote gut health in various experimental settings. This study investigated the role of 6-G in BaP-induced colonic oxidative and inflammatory stress responses in mice. Experimental mice were randomly assigned into five groups of eight mice each and were orally gavage with BaP (125 mg/kg) singly or in combination with 6-G at 50 and 100 mg/kg for 14 consecutive days. Following sacrifice, the colonic activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), myeloperoxidase (MPO) as well as levels of glutathione (GSH), nitrites and lipid peroxidation (LPO) were assessed spectrophotometrically. Moreover, colonic concentration of epoxide hydrolase (EPXH), tumor necrosis factor alpha (TNF-α), interleukin-1 β (IL-1β), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were assessed using ELISA. Administration of 6-G augmented BaP detoxification and colonic antioxidant status by increasing the EPXH, GST, SOD and CAT activities, GSH level with concomitant decrease in MDA level when compared with BaP alone group. In addition, 6-G suppressed BaP-induced colonic inflammation by decreasing MPO activity as well as nitrites, TNF-α, IL-1β, COX-2 and iNOS levels when compared with BaP alone group. In conclusion, 6-G protected against a decrease in colonic epoxide detoxifying enzymes and antioxidant defense mechanisms caused by BaP.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge