English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Free Radical Biology and Medicine 2017-May

6-Hydroxy-5,7-dimethoxy-flavone suppresses the neutrophil respiratory burst via selective PDE4 inhibition to ameliorate acute lung injury.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yung-Fong Tsai
Tzu-Chi Chu
Wen-Yi Chang
Yang-Chang Wu
Fang-Rong Chang
Shun-Chin Yang
Tung-Ying Wu
Yu-Ming Hsu
Chun-Yu Chen
Shih-Hsin Chang

Keywords

Abstract

Over-activated neutrophils produce enormous oxidative stress and play a key role in the development of acute and chronic inflammatory diseases. 6-Hydroxy-5,7-dimethoxy-flavone (UFM24), a flavone isolated from the Annonaceae Uvaria flexuosa, showed inhibitory effects on human neutrophil activation and salutary effects on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. UFM24 potently inhibited superoxide anion (O2•-) generation, reactive oxidants, and CD11b expression, but not elastase release, in N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLF)-activated human neutrophils. However, UFM24 failed to scavenge O2•- and inhibit the activity of subcellular NADPH oxidase. fMLF-induced phosphorylation of protein kinase B (Akt) was inhibited by UFM24. Noticeably, UFM24 increased cyclic adenosine monophosphate (cAMP) concentration and protein kinase (PK) A activity in activated human neutrophils. PKA inhibitors significantly reversed the inhibitory effects of UFM24, suggesting that the effects of UFM24 were through cAMP/PKA-dependent inhibition of Akt activation. Additionally, activity of cAMP-related phosphodiesterase (PDE)4, but not PDE3 or PDE7, was significantly reduced by UFM24. Furthermore, UFM24 attenuated neutrophil infiltration, myeloperoxidase activity, and pulmonary edema in LPS-induced ALI in mice. In conclusion, our data demonstrated that UFM24 inhibits oxidative burst in human neutrophils through inhibition of PDE4 activity. UFM24 also exhibited significant protection against endotoxin-induced ALI in mice. UFM24 has potential as an anti-inflammatory agent for treating neutrophilic lung damage.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge