English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Panminerva Medica 2020-Jul

6-Gingerol protects cardiomyocytes against hypoxia-induced injury by regulating the KCNQ1OT1/miR-340-5p/ PI3K/AKT pathway

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Fan Pan
Xiaopeng Xu
Zhi Zhan
Qunfeng Xu

Keywords

Abstract

Background: Hypoxia could induce cardiomyocytes injury and lead to heart disease. Studies have shown that 6-Gingerol has a protective effect on cardiomyocytes injury, but its molecular mechanism is still unclear.

Methods: Cell counting kit 8 (CCK8) and flow cytometry assays were used to measure the viability and apoptosis of cardiomyocytes. Western blot (WB) analysis was performed to assess the levels of proliferation, apoptosis, and phosphatidylinositol 3- kinase/protein kinase B (PI3K/AKT) signaling pathway-related proteins. The reactive oxygen species (ROS) level, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were detected by their corresponding Assay Kits. Besides, the expression levels of potassium voltage-gated channel subfamily Q member 1 opposite strand 1 (KCNQ1OT1) and microRNA-340-5p (miR-340-5p) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to verify the interaction between KCNQ1OT1 and miR-340-5p.

Results: Hypoxia could inhibit the viability and enhance the apoptosis and oxidative stress of cardiomyocytes to induce cardiomyocytes injury, while 6-Gingerol could alleviate this effect. Overexpression of KCNQ1OT1 aggravated hypoxia-induced cardiomyocytes injury and reversed the protective effect of 6-Gingerol on cardiomyocytes injury. Besides, miR-340-5p could be sponged by KCNQ1OT1, and its overexpression could invert the promotion effect of KCNQ1OT1 overexpression on hypoxia-induced cardiomyocytes injury. Moreover, miR-340-5p expression was regulated by 6-Gingerol and KCNQ1OT1. In addition, hypoxia inactivated the PI3K/AKT signaling pathway, whereas 6-Gingerol and miR-340-5p could reverse this effect.

Conclusions: 6-Gingerol could hinder the expression of KCNQ1OT1 to protect cardiomyocytes from hypoxia-induced injury through regulation of the miR-340-5p/ PI3K/AKT pathway, providing a new mechanism of 6-Gingerol protecting cardiomyocytes from injury.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge