English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Animal Science 2011-Sep

9-cis retinoic acid improves developmental competence and embryo quality during in vitro maturation of bovine oocytes through the inhibition of oocyte tumor necrosis factor-α gene expression.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
G K Deb
S R Dey
J I Bang
S J Cho
H C Park
J G Lee
I K Kong

Keywords

Abstract

Retinoic acid (RA; all-trans RA and 9-cis RA) enhances embryo developmental competence and quality through multiple mechanisms affecting the oocyte and preimplantation embryo. Folliculogenesis and oocyte maturation are influenced by tumor necrosis factor-α (TNF-α) via inhibition of aromatase activity and estradiol secretion in granulosa cells. Retinoic acid inhibits TNF-α production in various cell lines. The aim of the present study was to determine whether oocyte TNF-α concentrations regulate developmental competence and embryo quality and if the beneficial effects of 9-cis RA are mediated through attenuation of oocyte TNF-α production. Bovine cumulus oocyte complexes collected from abattoir ovaries were matured in maturation medium in the absence (control) or presence of 5 nM 9-cis RA (RA), 100 ng/mL of recombinant bovine TNF-α (TNF), or 5 nM 9-cis RA + 100 ng/mL of recombinant bovine TNF-α (RA+TNF). Oocytes were subsequently collected for gene expression analysis or subjected to in vitro fertilization and culture. Apoptosis and gene expression were analyzed in d-8 blastocysts. Results indicated that 9-cis RA downregulated (P < 0.01) both basal and TNF-α-induced TNF-α mRNA in oocytes (1.0-fold in control, 0.4-fold in RA, 2.1-fold in TNF, and 0.7-fold in RA+TNF). The 9-cis RA increased (P < 0.001) blastocyst development rates (37.1 ± 6.9 vs. 23.6 ± 8.0%) and total cell number (138.4 ± 19.2 vs. 120.2 ± 24.5) and reduced (P < 0.001) the percentage of apoptotic cells (3.3 ± 2.0 vs. 5.6 ± 2.3%) compared with controls. Expression of caspase 3 (0.4- vs. 1.0-fold) and TNF-α (0.4- vs. 1.0-fold) mRNA was downregulated (P < 0.05) in RA-treated blastocysts compared with controls. Moreover, 9-cis RA rescued (P < 0.001) development rates (24.5 ± 11.1 vs. 15.6 ± 9.0%), increased total cell number (124.6 ± 36.5 vs. 106.9 ± 31.1), and reduced apoptosis (5.8 ± 2.0 vs. 8.1 ± 3.1%) in blastocysts exposed to TNF-α (TNF group). Caspase 3 (0.8-fold in RA+TNF vs. 2.2-fold in TNF) and TNF-α (0.3-fold in RA+TNF vs. 2.8-fold in TNF) mRNA expression was attenuated (P < 0.05) in TNF-α-treated blastocysts. In conclusion, the present study suggests that 9-cis RA exerts its beneficial roles on oocyte developmental competence and embryo quality by attenuating oocyte TNF-α mRNA expression.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge