English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 2012-Mar

AGD1, a class 1 ARF-GAP, acts in common signaling pathways with phosphoinositide metabolism and the actin cytoskeleton in controlling Arabidopsis root hair polarity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Cheol-Min Yoo
Li Quan
Ashley E Cannon
Jiangqi Wen
Elison B Blancaflor

Keywords

Abstract

The Arabidopsis thaliana AGD1 gene encodes a class 1 adenosine diphosphate ribosylation factor-gtpase-activating protein (ARF-GAP). Previously, we found that agd1 mutants have root hairs that exhibit wavy growth and have two tips that originate from a single initiation point. To gain new insights into how AGD1 modulates root hair polarity we analyzed double mutants of agd1 and other loci involved in root hair development, and evaluated dynamics of various components of root hair tip growth in agd1 by live cell microscopy. Because AGD1 contains a phosphoinositide (PI) binding pleckstrin homology (PH) domain, we focused on genetic interactions between agd1 and root hair mutants altered in PI metabolism. Rhd4, which is knocked-out in a gene encoding a phosphatidylinositol-4-phosphate (PI-4P) phosphatase, was epistatic to agd1. In contrast, mutations to PIP5K3 and COW1, which encode a type B phosphatidylinositol-4-phosphate 5-kinase 3 and a phosphatidylinositol transfer protein, respectively, enhanced the root hair defects of agd1. Enhanced root hair defects were also observed in double mutants to AGD1 and ACT2, a root hair-expressed vegetative actin isoform. Consistent with our double-mutant studies, targeting of tip growth components involved in PI signaling (PI-4P), secretion (RABA4b) and actin regulation (ROP2), were altered in agd1 root hairs. Furthermore, tip cytosolic calcium ([Ca²⁺](cyt) ) oscillations were disrupted in root hairs of agd1. Taken together, our results indicate that AGD1 links PI signaling to cytoskeletal-, [Ca²⁺](cyt-) , ROP2-, and RABA4b-mediated root hair development.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge