English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Imaging and Biology 2016-Dec

A Feasibility Study Showing [68Ga]Citrate PET Detects Prostate Cancer.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Spencer C Behr
Rahul Aggarwal
Youngho Seo
Carina M Aparici
Emily Chang
Kenneth T Gao
Dora H Tao
Eric J Small
Michael J Evans

Keywords

Abstract

The management of advanced or recurrent prostate cancer is limited in part by the lack of effective imaging agents. Metabolic changes in prostate cancer have previously been exploited for imaging, culminating in the recent US FDA approval of [11C]choline for the detection of subclinical recurrent disease after definitive local therapy. Despite this milestone, production of [11C]choline requires an on-site cyclotron, limiting the scope of medical centers at which this scan can be offered. In this pilot study, we tested whether prostate cancer could be imaged with positron emission tomography (PET) using [68Ga]citrate, a radiotracer that targets iron metabolism but is produced without a cyclotron.

Eight patients with castrate-resistant prostate cancer were enrolled in this single-center feasibility study. All patients had evidence of metastatic disease by standard of care imaging [X-ray computed tomography (CT), bone scan, or magnetic resonance imaging (MRI)] prior to PET with [68Ga]citrate. Patients were intravenously injected with increasing doses of [68Ga]citrate (136.9 to a maximum of 259 MBq). Uptake time was steadily increased from 1 h to approximately 3.5 h for the final 4 patients, and all patients were imaged with a PET/MRI. Qualitative and semi-quantitative (maximum standardized uptake value (SUVmax)) assessment of the metastatic lesions was performed and compared to the standard of care imaging.

At 1- and 2-h imaging times post injection, there were no detectable lesions with [68Ga]citrate PET. At 3- to 4-h uptake time, there were a total of 71 [68Ga]citrate-positive lesions (67 osseous, 1 liver, and 3 lymph node). Of these, 65 lesions were visible on the standard of care imaging (CT and/or bone scan). One PET-avid osseous vertebral body metastasis was not apparent on either CT or bone scan. Twenty-five lesions were not PET-avid but seen on CT and bone scan (17 bone, 6 lymph node, 1 pleural, and 1 liver). The average of the maximum SUVs for bone or soft tissue metastases for patients treated at higher doses and uptake time was statistically higher than the corresponding parameter in normal liver, muscle, and bone. Visually obvious blood pool activity was observed even 3-4 h post injection, suggesting that further optimization of the [68Ga]citrate imaging protocol is required to maximize signal-to-background ratios.

Our preliminary results support that PET with [68Ga]citrate may be a novel tool for imaging prostate cancer. Future studies are needed to determine the optimal imaging protocol, the clinical significance of [68Ga]citrate uptake, and its role in therapeutic decisions.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge