English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 2004-Nov

A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds in Scots pine (Pinus sylvestris) wood. Part II. Hydrophilic compounds.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Nuopponen
S Willför
A-S Jääskeläinen
T Vuorinen

Keywords

Abstract

Hydrophilic extracts of Scots pine (Pinus sylvestris) heartwood and sapwood and a solid Scots pine knotwood sample were studied by UV resonance Raman spectroscopy (UVRRS). In addition, UVRR spectra of two hydrophilic model compounds (pinosylvin and chrysin) were analysed. UV Raman spectra were collected using 244 and 257 nm excitation wavelengths. The chemical composition of the acetone:water (95:5 v/v) extracts were also determined by gas chromatography. The aromatic and oleophilic structures of pinosylvin and chrysin showed three intense resonance enhanced bands in the spectral region of 1649-1548 cm(-1). Pinosylvin showed also a relatively intense band in the aromatic substitution region at 996 cm(-1). The spectra of the heartwood acetone:water extract showed many bands typical of pinosylvin. In addition, the extract included bands distinctive for resin and fatty acids. The sapwood acetone:water extract showed bands due to oleophilic structures at 1655-1650 cm(-1). The extract probably also contained oligomeric lignans because the UVRR spectra were in parts similar to that of guaiacyl lignin. The characteristic band of pinosylvin (996 cm(-1)) was detected in the UVRR spectrum of the resin rich knotwood. In addition, several other bands typical for wood resin were observed, which indicated that the wood resin in the knotwood was resonance enhanced even more than lignin.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge