English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Genomics 2009-Aug

A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
David J Studholme
Selena Gimenez Ibanez
Daniel MacLean
Jeffery L Dangl
Jeff H Chang
John P Rathjen

Keywords

Abstract

BACKGROUND

Pseudomonas syringae is a widespread bacterial pathogen that causes disease on a broad range of economically important plant species. Pathogenicity of P. syringae strains is dependent on the type III secretion system, which secretes a suite of up to about thirty virulence 'effector' proteins into the host cytoplasm where they subvert the eukaryotic cell physiology and disrupt host defences. P. syringae pathovar tabaci naturally causes disease on wild tobacco, the model member of the Solanaceae, a family that includes many crop species as well as on soybean.

RESULTS

We used the 'next-generation' Illumina sequencing platform and the Velvet short-read assembly program to generate a 145X deep 6,077,921 nucleotide draft genome sequence for P. syringae pathovar tabaci strain 11528. From our draft assembly, we predicted 5,300 potential genes encoding proteins of at least 100 amino acids long, of which 303 (5.72%) had no significant sequence similarity to those encoded by the three previously fully sequenced P. syringae genomes. Of the core set of Hrp Outer Proteins that are conserved in three previously fully sequenced P. syringae strains, most were also conserved in strain 11528, including AvrE1, HopAH2, HopAJ2, HopAK1, HopAN1, HopI, HopJ1, HopX1, HrpK1 and HrpW1. However, the hrpZ1 gene is partially deleted and hopAF1 is completely absent in 11528. The draft genome of strain 11528 also encodes close homologues of HopO1, HopT1, HopAH1, HopR1, HopV1, HopAG1, HopAS1, HopAE1, HopAR1, HopF1, and HopW1 and a degenerate HopM1'. Using a functional screen, we confirmed that hopO1, hopT1, hopAH1, hopM1', hopAE1, hopAR1, and hopAI1' are part of the virulence-associated HrpL regulon, though the hopAI1' and hopM1' sequences were degenerate with premature stop codons. We also discovered two additional HrpL-regulated effector candidates and an HrpL-regulated distant homologue of avrPto1.

CONCLUSIONS

The draft genome sequence facilitates the continued development of P. syringae pathovar tabaci on wild tobacco as an attractive model system for studying bacterial disease on plants. The catalogue of effectors sheds further light on the evolution of pathogenicity and host-specificity as well as providing a set of molecular tools for the study of plant defence mechanisms. We also discovered several large genomic regions in Pta 11528 that do not share detectable nucleotide sequence similarity with previously sequenced Pseudomonas genomes. These regions may include horizontally acquired islands that possibly contribute to pathogenicity or epiphytic fitness of Pta 11528.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge