English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Saudi Journal of Biological Sciences 2019-May

A facile and rapid method for green synthesis of Achyranthes aspera stem extract-mediated silver nano-composites with cidal potential against Aedes aegypti L.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Aarti Sharma
Sarita Kumar
Pushplata Tripathi

Keywords

Abstract

Aedes aegypti L. is the primary vector associated with transmission of globally concerned diseases; Zika, yellow fever, dengue and Chikungunya. Present study investigates an efficient, alternative and comparative approach for mosquito control which is safe to environment and non-target organisms. The silver nano-composites (AgNCs) were synthesized from the aqueous stem extract of Achyranthes aspera (AASE) using different concentration of aqueous silver nitrate (AgNO3). The synthesis was tracked by UV-vis spectrophotometer and particle size analyser (DLS). The evaluation of their larvicidal potential against early fourth instars of Ae. aegypti showed significant potency, the toxicity increasing with the concentration of silver nitrate. The 24, 48 and 72 h bioassays resulted in respective LC50 values of 26.693, 1.113 and 0.610 μg/mL (3 mM AASE-AgNO3) 9.119, 0.420 and 0.407 μg/mL (4 mM AASE-AgNO3) and that of 4.283, 0.3 and 0.248 μg/mL (5 mM AASE-AgNO3). Keeping in view the significantly high larvicidal efficiency at lower concentration of silver nitrate, the 4 mM nano-composites were selected over 5 mM composites for further biophysical characterization carried out by X-ray Diffraction (XRD), Fourier transform infrared spectrometer (FTIR), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) spectroscopy and Transmission electron microscopy (TEM). SEM and TEM confirmed the synthesis of spherical poly-dispersed AgNCs with average size ranging from 1-30 nm. Characterization through XRD showed the crystalline face-centered-cubic (fcc) structure of AgNCs with the highest intense peak obtained at 2θ value of 31.82°. FT-IR data suggests complex nature of AgNCs showing clearly defined peaks in different ranges. The present investigations recommend AgNCs of A. aspera stems as a low-cost and eco-friendly alternative to chemical insecticides for mosquito control.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge