English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Molecular Biology 2008-Feb

A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xin Li
Genji Qin
Zhangliang Chen
Hongya Gu
Li-Jia Qu

Keywords

Abstract

GT factors are plant-specific trihelix DNA-binding transcription factors, which are involved in light responses and other developmental processes in plant. We identified a gain-of-function mutant of a GT-2 factor gene, PETAL LOSS (PTL), which displayed pleiotropic phenotypes including dwarfism, curly leaves, retarded growth and male sterility. We found that constitutive and ectopic over-expression of PTL driven by the CaMV 35S promoter could not recapitulate the phenotypes of the 35S enhancer-driven mutant ptl-D, and was lethal in some of the transgenic plants at the cotyledon developmental stage, suggesting that accurate temporal and spatial expression of PTL is essential for its proper functional implementation during plant development. Further analysis showed that ptl-D was defective in auxin action and that the alteration of auxin distribution corresponded to the curly leaf phenotype. The fact that degeneration of septum cells and subsequent breakage along the stomium was not observed in ptl-D anthers suggests that defective anther dehiscence was the cause for male sterility. Identification and characterization of the gain-of-function mutant ptl-D will improve our understanding of the diverse functions of GT factors during plant development.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge