English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Vascular Surgery 2011-Jul

A link between smooth muscle cell death and extracellular matrix degradation during vascular atrophy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Richard D Kenagy
Seung-Kee Min
Eileen Mulvihill
Alexander W Clowes

Keywords

Abstract

OBJECTIVE

High blood flow induces neointimal atrophy in polytetrafluoroethylene (PTFE) aortoiliac grafts and a tight external PTFE wrap of the iliac artery induces medial atrophy. In both nonhuman primate models, atrophy with loss of smooth muscle cells and extracellular matrix (ECM) begins at ≤4 days. We hypothesized that matrix loss would be linked to cell death, but the factors and mechanisms involved are not known. The purpose of this study was to determine commonly regulated genes in these two models, which we hypothesized would be a small set of genes that might be key regulators of vascular atrophy.

METHODS

DNA microarray analysis (Sentrix Human Ref 8; Illumina, San Diego, Calif; ∼23,000 genes) was performed on arterial tissue from the wrap model (n = 9) and graft neointima from the graft model (n = 5) 1 day after wrapping or the switch to high flow, respectively. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was also performed. Expression of this vascular atrophy gene set was also studied after Fas ligand-induced cell death in cultured smooth muscle cells and organ cultured arteries.

RESULTS

Microarray analysis showed 15 genes were regulated in the same direction in both atrophy models: 9 upregulated and 6 downregulated. Seven of nine upregulated genes were confirmed by qRT-PCR in both models. Upregulated genes included the ECM-degrading enzymes ADAMTS4, tissue plasminogen activator (PLAT), and hyaluronidase 2; possible growth regulatory factors, including chromosome 8 open reading frame 4 and leucine-rich repeat family containing 8; a differentiation regulatory factor (musculoskeletal embryonic nuclear protein 1); a dead cell removal factor (ficolin 3); and a prostaglandin transporter (solute carrier organic anion transporter family member 2A1). Five downregulated genes were confirmed but only in one or the other model. Of the seven upregulated genes, ADAMTS4, PLAT, hyaluronidase 2, solute carrier organic anion transporter family member 2A1, leucine-rich repeat family containing 8, and chromosome 8 open reading frame 4 were also upregulated in vitro in cultured smooth muscle cells or cultured iliac artery by treatment with FasL, which causes cell death. However, blockade of caspase activity with Z-VAD inhibited FasL-mediated cell death, but not gene induction.

CONCLUSIONS

Seven gene products were upregulated in two distinctly different in vivo nonhuman primate vascular atrophy models. Induction of cell death by FasL in vitro induced six of these genes, including the ECM-degrading factors ADAMTS4, hyaluronidase 2, and PLAT, suggesting a mechanism by which the program of tissue atrophy coordinately removes extracellular matrix as cells die. These genes may be key regulators of vascular atrophy.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge