English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biosensors and Bioelectronics 2005-Aug

A microbead array chemical sensor using capillary-based sample introduction: toward the development of an "electronic tongue".

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Young-Soo Sohn
Adrian Goodey
Eric V Anslyn
John T McDevitt
Jason B Shear
Dean P Neikirk

Keywords

Abstract

The development of a micromachined fluidic structure for the introduction of liquid samples into a chip-based sensor array composed of individually addressable polymeric microbeads is presented. The micromachined structure consists of micromachined storage cavities combined with a covering glass layer that confines the microbeads and fluidic channels. In our sensor array transduction occurs via optical (colorimetric and fluorescence) changes to receptors and indicator molecules that are covalently attached to termination sites on the polymeric microbeads. Spectral data are acquired for each of the individual microbeads using a charged-coupled device (CCD) allowing for the near-real-time analysis of liquid sample. Hence the micromachined fluidic structure must allow for both optical access to the microbeads and fluid flow through the micromachined cavities that serve as the microreactors/analysis chambers. One of the key parts of the structure is a passive fluid introduction system driven only by capillary force. This simple means of fluid introduction realizes a compact device. The capillary flow on the inlet channel has been studied, and the responses of the microbeads (alizarin complexone) to a liquid sample have been characterized. The test results show that this system is useful in a micro-total-analysis-system (mu-TAS) and biomedical applications.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge