English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Comptes Rendus - Biologies 2019-Nov

A molecular study of Tunisian populations of Dugesia sicula (Plathelminthes, Tricladida) through an identification of a set of genes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Emna Meddeb
Mohamed Charni
Rim Ben Abdallah
Faten Raboudi
Sami Fattouch

Keywords

Abstract

Cell regeneration is a natural repair of different types of tissue after an injury or a lesion, and is associated with asexual reproduction in some animals such as planarians. Its understanding and improvement could have repercussions for tissue repair and regeneration as far as humans are concerned. In this context, we have proceeded to an essential step, which is the identification of the genes involved in planarian regeneration in the model species. Dugesia sicula Lepori (D. sicula) is distributed around the Mediterranean Sea, and this population is found in most of Tunisian dams. The collection of identified genes is already known in other species. DjFoxG, DjPC2, DjotxA, and Cathepsin-D were identified by the PCR technique and their expression was confirmed by RT-PCR and in situ hybridization. DjFoxG gene, the FoxG1 homolog, is expressed throughout the planarian body, abundantly on stem cells. Consecutively, we choose a central nervous system (CNS) marker; the prohormone convertase 2 (DjPC2) gene. DjotxA was observed in the brain and especially in the region surrounding the eyes (visual cells). The regenerative cells of the gut of D. sicula were scored by the Cathepsin-D gene expression, which belongs to the aspartyl protease family. We found significant results through RT-PCR and In Situ Hybridization (ISH) techniques, confirming the expression of DjFoxG, DjPC2, DjotxA and Cathepsin-D genes in our specimens.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge