English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ultrasonics Sonochemistry 2009-Jan

A multivariate study of the performance of an ultrasound-assisted madder dyes extraction and characterization by liquid chromatography-photodiode array detection.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Guillaume Cuoco
Carole Mathe
Paul Archier
Farid Chemat
Cathy Vieillescazes

Keywords

Abstract

An extraction method of madder (Rubia tinctorum) roots dyes is established and optimized to obtain the original chemical composition. A central composite design (CCD) was developed to specify the importance of the three major factors studied (time, temperature and solvent composition) affecting the ultrasound-assisted extraction of this matrix. A preliminary granulometric study of madder roots is realized in the aim to determine the optimal particles size corresponding to the best ultrasound effects. A comparison with the classical extraction method of madder dyes by reflux is described. The identification of the constituents of R. tinctorum is carried out by liquid chromatography coupled with a photodiode array detector (LC-PDA). Anthraquinonic aglycone and heterosidic dyes compounds are characterized by retention time and UV spectrum: alizarin (1,2-dihydroxyanthraquinone), purpurin (1,2,4-trihydroxyanthraquinone), lucidin (1,3-dihydroxy-2-hydroxymethylanthraquinone), rubiadin (1,3-dihydroxy-2-methylanthraquinone), xanthopurpurin (1,3-dihydroxyanthraquinone), pseudopurpurin (1,2,4-trihydroxy-3-carboxyanthraquinone), lucidin primeveroside, ruberythric acid (alizarin primeveroside), galiosin (pseudopurpurin primeveroside) and rubiadin primeveroside. The optimal experimental conditions are 18min, 36 degrees C and 37/63 MeOH/H(2)O (v/v).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge