English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2019-Aug

A natural anticancer pigment,Pheophytin a,from a seagrass acts as a high affinity human mitochondrial translocator protein (TSPO) ligand, in silico, to reduce mitochondrial membrane Potential (∆ψmit) in adenocarcinomic A549 cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
V Shailaja
V Christina
C Mohanapriya
P Sneha
R Sundaram
R Magesh
C Doss
K Gnanambal

Keywords

Abstract

The present investigation looks at the most likely possibilities of usage of a naturally occurring photosynthetic pigment, Pheophytin a, from the seagrass, Syringodium isoetifolium, for plausible use as human TSPO ligand.Pheophytin a isolated in our laboratory previously was administered to A549 cell lines in vitro to examine its effects on cell migrations, DNA, cell cycle, Mitochondrial Membrane Potential and gene expressions. In silico tools were used to predict the nature of the compound and target binding.

RESULTS
Pheophytin a hadIC50 values of 22.9 ± 5.8 µM for cancerous A549 cell lines, whilst not targeting non-cancerous vero cells [IC50: 183.6 ± 1.92 µM]. Pheophytin a hindered cellular migration, fragmented DNA, arrested cell cycle precisely at S phase, reduced ∆ψmit and directed mRNA expressions toward apoptosis. In silico tools indicate that the compound binds to TSPO with high effectiveness to collapse ∆ψmit(which is proved using wet lab experiments) to promote mitophagy.

Hence Pheophytin a could be seen as a possible TSPO ligand for targeting metastatic alveolar cancers like A549 via intrinsic apoptotic pathway.Given the inherent non-toxic nature of the compound and easy extractability from almost all autotrophic eukaryotes, one could be confident to testing in animal models.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge