English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Molecular Medicine 2013-Nov

A new method for the quantification of aortic calcification by three-dimensional micro-computed tomography.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C Huesa
J L Millán
R J van 't Hof
V E MacRae

Keywords

Abstract

To gain a better understanding of the mechanisms that underpin aortic calcification, rodent models have been previously utilised. Regions of calcium and phosphate deposition are commonly visualised using labor-intensive two-dimensional histomorphometric techniques. In this study, we developed a novel micro-computed tomography (µCT) imaging protocol to quantify calcification in vascular tissues using high resolution three-dimensional (3D) reconstructions of aortae derived from the well-established Ecto-nucleotide pyrophosphatase/phosphodiesterase-1 knockout (Enpp1-/-) mouse model of medial aortic calcification. A dual-contrast method was employed for specimen preparation and the application of corn oil as a submersion medium for the samples during scanning, which allowed the definition and quantification of soft tissue. 3D µCT was utilised to produce reconstructions of calcified and non-calcified aortae. A highly accurate quantification of a standardized region of calcium deposition was undertaken on these reconstructions. An excellent correlation between images obtained from µCT and those obtained with Alizarin red staining, of whole aortae for calcium deposition, was observed. This imaging protocol provides a powerful tool for studying the development of aortic calcification and potential therapeutic approaches for clinical intervention.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge