English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell Reports 2008-Apr

A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wei Wei
Yuxiu Zhang
Lu Han
Ziqiu Guan
Tuanyao Chai

Keywords

Abstract

A novel member of the WRKY gene family, designated TcWRKY53, was isolated from a cadmium (Cd)-treated Thlaspi caerulescens cDNA library by differential screening. WRKY proteins specifically bind to W-boxes, which are found in the promoters of many genes involved in defense and response to environmental stress. TcWRKY53 contains a 975-bp open reading frame encoding a putative protein of 324 amino acids. Homology searches showed that TcWRKY53 resembles similar WRKY domain-containing proteins from rice, parsley and tobacco, especially AtWRKY53 from Arabidopsis thaliana. Semi-quantitative RT-PCR showed that the expression of TcWRKY53 was strongly induced by various environmental stresses, including an excess of NaCl, drought, cold and the signal molecule salicylic acid (SA). The expression of TcWRKY53 in response to NaCl, drought and cold suggested a possible role of TcWRKY53 in abiotic stress response. However, physiological tests indicated that the expression of TcWRKY53 in tobaccos decreases tolerance to sorbitol during seedling root development. This was consistent with PEG6000 treatment of tobacco seedlings, and together these results indicate a negative modulation of TcWRKY53 in response to osmotic stress. Furthermore, two ethylene responsive factor (ERF) family genes, NtERF5 and NtEREBP-1, were negatively induced in TcWRKY53-overexpressing transgenic plants. In contrast, a LEA family gene, NtLEA5, showed no change, suggesting that TcWRKY53 might regulate the plant osmotic stress response by interacting with an ERF-type transcription factor rather than by regulating function genes directly.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge