English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Medicinal Chemistry 2019-Oct

A novel chalcone derivative as Nrf2 activator attenuates learning and memory impairment in a scopolamine-induced mouse model.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hyeon Kim
Bo Jang
Jong-Hyun Park
Ji Choi
Sun Park
Seong Byeon
Ae Pae
Yong Lee
Eunji Cheong
Ki Park

Keywords

Abstract

Alzheimer's disease is a common neurodegenerative disease characterized by progressive degeneration and neuronal cell death, resulting in neural network dysfunction. As the underlying mechanisms, oxidative damage and neuroinflammation have been reported to contribute to the onset and deterioration of Alzheimer's disease. The nuclear factor E2-related factor 2-antioxidant responsive element signaling pathway is a pivotal cellular defense mechanism against oxidative stress. Nrf2, a transcription factor, regulates the cellular redox balance and is primarily involved in anti-inflammatory responses. In this study, we synthesized novel chalcone derivatives and found a highly potent Nrf2 activator, compound 20a. Compound 20a confirmed to activate Nrf2 and induce expression of the Nrf2-dependent enzymes HO-1 and GCLC at both mRNA and protein levels. It also suppressed the production of nitric oxide and downregulated inflammatory mediators in BV-2 microglial cells. We found that compound 20a effectively increased the expression level and the activity of superoxide dismutase in both BV-2 microglial cells and brain hippocampus region of the scopolamine-induced mouse model. In addition, compound 20a effectively recovered the learning and memory impairment in a scopolamine-induced mouse model.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge