English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Breast Cancer Research and Treatment 2008-May

A plant oxylipin, 12-oxo-phytodienoic acid, inhibits proliferation of human breast cancer cells by targeting cyclin D1.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nedret Altiok
Heather Mezzadra
Pina Patel
Meral Koyuturk
Soner Altiok

Keywords

Abstract

Cyclin D1 overexpression has been associated with poor prognosis and resistance to therapy in human breast cancer. Thus, the development of therapeutic agents that selectively target cyclin D1 activity is of clinical interest. This study demonstrates that 12-oxo-phytodienoic acid (OPDA), a phytohormone with critical functions in growth and development in plants, induces growth arrest in MDA-MB-231 and T47D breast cancer cells. In response to OPDA treatment, the human breast cancer cell lines exhibit a progressive decline in cyclin D1 expression, which is tightly associated with the accumulation of hypophosphorylated form of the retinoblastoma protein (Rb) and G1 arrest. The decrease in cyclin D1 protein expression accompanies a dramatic decline in nuclear but not membranous beta-catenin expression and activation of glycogen synthase kinase-3-beta (GSK3beta) caused by inhibition of its serine-9 phosphorylation. The proteasome inhibitor MG132 blocks OPDA-mediated decrease in cyclin D1. In addition, the overexpression of T286A, a cyclin D1 mutant which is refractory to phosphorylation by GSK3beta and proteosomal degradation, is resistant to OPDA-mediated Rb dephosphorylation as well as G(1) cell cycle arrest. Thus, our results demonstrate that degradation of cyclin D1 protein is a key event in OPDA induced growth inhibition in breast cancer cells. These data provide the basic foundation for future efforts to develop OPDA-based approaches in the prevention and treatment of breast cancer and other types of cancer.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge