English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Plant-Microbe Interactions 2010-Jun

A point mutation in the polymerase of Potato virus Y confers virulence toward the Pvr4 resistance of pepper and a high competitiveness cost in susceptible cultivar.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bérenger Janzac
Josselin Montarry
Alain Palloix
Olivier Navaud
Benoît Moury

Keywords

Abstract

To understand why the Pvr4 resistance of pepper against Potyvirus spp. remained durable in field conditions while virulent Potato virus Y (PVY) variants could be selected in the laboratory, we studied the molecular mechanisms which generated these variants and the consequences on viral fitness. Using a reverse genetics approach with an infectious cDNA clone of PVY, we found that the region coding for the NIb protein (RNA-dependent RNA polymerase) of PVY was the avirulence factor corresponding to Pvr4 and that a single nonsynonymous nucleotide substitution in that region, an adenosine to guanosine substitution at position 8,424 of the PVY genome (A(8424)G), was sufficient for virulence. This substitution imposed a high competitiveness cost to the virus against an avirulent PVY variant in plants devoid of Pvr4. In addition, during serial passages in susceptible pepper plants, the only observed possibility of the virulent mutant to increase its fitness was through the G(8424)A reversion, strengthening the high durability potential of the Pvr4 resistance. This is in accordance with the fact that the NIb protein is one of the most constrained proteins expressed by the PVY genome and, more generally, by Potyvirus spp., and with a previously developed model predicting the durability of virus resistances as a function of the evolutionary constraint applied on corresponding avirulence factors.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge