English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Pharmacology 2005-Nov

A prodrug of cysteine, L-2-oxothiazolidine-4-carboxylic acid, regulates vascular permeability by reducing vascular endothelial growth factor expression in asthma.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kyung Sun Lee
Hee Sun Park
Seoung Ju Park
So Ri Kim
Kyung Hoon Min
Sun Mi Jin
Kwang-Hyun Park
Uh-Hyun Kim
Chan Young Kim
Yong Chul Lee

Keywords

Abstract

Inflammation of the asthmatic airway is usually accompanied by increased vascular permeability and plasma exudation. Oxidative stress plays critical roles in airway inflammation. Although reactive oxygen species (ROS) are shown to cause vascular leakage, the mechanisms by which ROS induce increased vascular permeability are not clearly understood. We have used a murine model of asthma to evaluate the effect of l-2-oxothiazolidine-4-carboxylic acid (OTC), a prodrug of cysteine that acts as an antioxidant, more specifically in the increase of vascular permeability. These mice develop the following typical pathophysiological features of asthma in the lungs: increased numbers of inflammatory cells of the airways, airway hyper-responsiveness, increased vascular permeability, and increased levels of vascular endothelial growth factor (VEGF). Administration of OTC markedly reduced plasma extravasation and VEGF levels in allergen-induced asthmatic lungs. We also showed that at 72 h after ovalbumin inhalation, increased levels of hypoxia-inducible factor-1alpha (a transcriptional activator of VEGF) in nuclear protein extracts of lung tissues were decreased by the administration of OTC. These results indicate that OTC modulates vascular permeability by lowering VEGF expression.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge